• Title/Summary/Keyword: plant-pathogen interaction

Search Result 62, Processing Time 0.034 seconds

Recessive Resistance: Developing Targets for Genome Editing to Engineer Viral Disease Resistant Crops (바이러스 열성 저항성: 병저항성 작물 개발을 위한 유전자 교정 소재 발굴 연구의 동향)

  • Han, Soo-Jung;Heo, Kyeong-Jae;Choi, Boram;Seo, Jang-Kyun
    • Research in Plant Disease
    • /
    • v.25 no.2
    • /
    • pp.49-61
    • /
    • 2019
  • Plant viruses are among the important pathogens that cause severe crop losses. The most efficient method to control viral diseases is currently to use virus resistant crops. In order to develop the virus resistant crops, a detailed understanding of the molecular interactions between viral and host proteins is necessary. Recessive resistance to a pathogen can be conferred when plant genes essential in the life cycle of a pathogens are deficient, while dominant resistance is mediated by host resistance (R) genes specifically interacting with effector proteins of pathogens. Thus, recessive resistance usually works more stably and broadly than dominant resistance. While most of the recessive resistance genes have so far been identified by forward genetic approaches, recent advances in genome editing technologies including CRISPR/Cas9 have increased interest in using these technologies as reverse genetic tools to engineer plant genes to confer recessive resistance. This review summarizes currently identified recessive resistance genes and introduces reverse genetic approaches to identify host interacting partner proteins of viral proteins and to evaluate the identified genes as genetic resources of recessive resistance. We further discuss recent advances in various precise genome editing technologies and how to apply these technologies to engineer plant immunity.

Establishment of an Efficient Agrobacterium Transformation System for Eggplant and Study of a Potential Biotechnologically Useful Promoter

  • Claudiu Magioli;Ana Paula Machado da Rocha;Pinheiro, Marcia-Margis;Martins, Gilberto-Sachetto;Elisabeth Mansur
    • Journal of Plant Biotechnology
    • /
    • v.2 no.1
    • /
    • pp.43-49
    • /
    • 2000
  • An efficient and reliable Agrobacterium transformation procedure based on TDZ (thidiazuron)-induced organogenesis was established and applied to six Brazilian eggp1ant varieties. Optimum transgenic plants recovery was achieved upon the study of the following parameters affecting transformation efficiency, using F-100 variety as a model: i) explant source; ii) pre-culture period; iii) physical state of the pre-culture medium and iv) coculture conditions. The highest frequency of kanamycin-resistant calli derived from leaf explants (5%) was obtained without a pre-culture period and co-cultivation for 24 h in liquid medium followed by five days on solid RM (regeneration medium). For cotyledon explants, best results were achieved upon a pre-culture of 24 h in liquid RM and a co-cultivation period of 24 h in liquid RM followed by three days in solid RM, resulting in a transformation Sequency of 22.7%. Kanamycin-resistant organogenic calli were also obtained from cultivars Emb, Preta Comprida, Round nose Shaded, Campineira and Florida Market. The expression pattern of an epidermis-specific promoter was studied using transformants expressing a chimaeric construct comprised by the promoter Atgrp-5 transcriptionally fused to the coding region of the gus gene. The expression pattern was similar to that previously observed in tobacco and Arabidopsis thaliana, with preferential expression at the epidermis and the stem phloem. These results support the idea that the Atgrp-5 promoter can be used to drive defense genes in these tissues, which are sites of pathogen interaction and spread, in programs for the genetic improvement of eggplant.

  • PDF

Analysis of Rice Blast Infection and Resistance-inducing Mechanisms via Effectors Secreted from Magnaporthe oryzae

  • Saitoh, Hiromasa;H, Kanzaki;K, Fujisaki;R, Terauchi
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.61-61
    • /
    • 2015
  • Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most destructive diseases of rice worldwide. The rice - M. oryzae pathosystem has become a model in the study of plant - fungal interactions due to its economic importance and accumulating knowledge. During the evolutionary arms race with M. oryzae, rice plants evolved a repertoire of Resistance (R) genes to protect themselves from diseases in a gene-for-gene fashion. M. oryzae secretes a battery of small effector proteins to manipulate host functions for its successful infection, and some of them are recognized by host R proteins as avirulence effectors (AVR), which turns on strong immunity. Therefore, the analysis of interactions between AVRs and their cognate R proteins provide crucial insights into the molecular basis of plant - fungal interactions. Rice blast resistance genes Pik, Pia, Pii comprise pairs of protein-coding ORFs, Pik-1 and Pik-2, RGA4 and RGA5, Pii-1 and Pii-2, respectively. In all three cases, the paired genes are tightly linked and oriented to the opposite directions. In the AVR-Pik/Pik interaction, it has been unraveled that AVR-Pik binds to the N-terminal coiled-coil domain of Pik-1. RGA4 and RGA5 are necessary and sufficient to mediate Pia resistance and recognize the M. oryzae effectors AVR-Pia and AVR1-CO39. A domain at the C-terminus of RGA5 characterized by a heavy metal associated domain was identified as the AVR-binding domain of RGA5. Similarly, physical interactions among Pii-1, Pii-2 and AVR-Pii are being analyzed.

  • PDF

Construction of a High-Quality Yeast Two-Hybrid Library and Its Application in Identification of Interacting Proteins with Brn1 in Curvularia lunata

  • Gao, Jin-Xin;Jing, Jing;Yu, Chuan-Jin;Chen, Jie
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.108-114
    • /
    • 2015
  • Curvularia lunata is an important maize foliar fungal pathogen that distributes widely in maize growing area in China, and several key pathogenic factors have been isolated. An yeast two-hybrid (Y2H) library is a very useful platform to further unravel novel pathogenic factors in C. lunata. To construct a high-quality full length-expression cDNA library from the C. lunata for application to pathogenesis-related protein-protein interaction screening, total RNA was extracted. The SMART (Switching Mechanism At 5' end of the RNA Transcript) technique was used for cDNA synthesis. Double-stranded cDNA was ligated into the pGADT7-Rec vector with Herring Testes Carrier DNA using homologous recombination method. The ligation mixture was transformed into competent yeast AH109 cells to construct the primary cDNA library. Eventually, a high qualitative library was successfully established according to an evaluation on quality. The transformation efficiency was about $6.39{\times}10^5$ transformants/$3{\mu}g$ pGADT7-Rec. The titer of the primary cDNA library was $2.5{\times}10^8cfu/mL$. The numbers for the cDNA library was $2.46{\times}10^5$. Randomly picked clones show that the recombination rate was 88.24%. Gel electrophoresis results indicated that the fragments ranged from 0.4 kb to 3.0 kb. Melanin synthesis protein Brn1 (1,3,8-hydroxynaphthalene reductase) was used as a "bait" to test the sufficiency of the Y2H library. As a result, a cDNA clone encoding VelB protein that was known to be involved in the regulation of diverse cellular processes, including control of secondary metabolism containing melanin and toxin production in many filamentous fungi was identified. Further study on the exact role of the VelB gene is underway.

Assessment of Pathogenic Variation against Pitch Canker Pathogen, Fusarium circinatum in Pinus thunbergii and Responses of Natural Selection Pinus × rigitaeda to Branch Inoculation in a Seed Orchard

  • Woo, Kwan-Soo;Yoon, Jun-Hyuck;Han, Sang-Urk;Kim, Chang-Soo
    • The Plant Pathology Journal
    • /
    • v.26 no.4
    • /
    • pp.299-305
    • /
    • 2010
  • A half-sib family of two 4-year-old seedlings of Pinus $\times$ rigitaeda was inoculated with each of 20 Pinus thunbergii isolates of Fusarium circinatum (syn. Fusarium subglutinans f. sp. pini) from two pitch canker damaged sites in Jeju Island, South Korea. Initial symptoms of needle damages were visible on most of the seedlings at 18 days after inoculation. The 20 tested isolates were not significantly different in virulence, based on lesion lengths at the site of inoculation (P = 0.217). The most virulent isolate FT-7 showed the longest lesion length. Some seedlings began to die 46 days after inoculation. All seedlings were dead by 68 days after inoculation except two seedlings inoculated with each of isolates FS-2 and FS-13, respectively. Using the FT-7, 38-year-old 11 P. $\times$ rigitaeda trees, which were survived from a seed orchard severely damaged by pitch canker, were inoculated on branches in the seed orchard in Jeju Island to assess differences in susceptibility to pitch canker. The 11 trees differed significantly (P < 0.001) in susceptibility to F. circinatum based on average lesion lengths measured 56 days after inoculation. It is possible that induced resistance contributed to their capacity to limit lesion development. The susceptibility of natural selection P. $\times$ rigitaeda trees are more likely affected by interaction with F. circinatum rather than environmental conditions.

Indigenous Fungivorous Nematodes Affect the Biocontrol Efficacy of Trichoderma harzianum through Reducing the Hyphal Density

  • Kim, Tae Gwan;Knudsen, Guy R.
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.815-822
    • /
    • 2021
  • Indigenous fungus-feeding nematodes may adversely affect the growth and activity of introduced biocontrol fungi. Alginate pellets of the biocontrol fungus Trichoderma harzianum ThzID1-M3 and sclerotia of the fungal plant pathogen Sclerotinia sclerotiorum were added to nonsterile soil at a soil water potential of -50 or -1,000 kPa. The biomass of ThzID1-M3, nematode populations, and extent of colonization of sclerotia by ThzID1-M3 were monitored over time. The presence of ThzID1-M3 increased the nematode population under both moisture regimes (p < 0.05), and fungivores comprised 69-75% of the nematode population. By day 5, the biomass of ThzID1-M3b and its colonization of sclerotia increased and were strongly correlated (R2 = 0.98), followed by a rapid reduction, under both regimes. At -50 kPa (the wetter of the two environments), fungal biomass and colonization by ThzID1-M3 were less, in the period from 5 to 20 days, while fungivores were more abundant. These results indicate that ThzID1-M3 stimulated the population growth of fungivorous nematodes, which in turn, reduced the biocontrol ability of the fungus to mycoparasitize sclerotia. However, colonization incidence reached 100% by day 5 and remained so for the experimental period under both regimes, although hyphal fragments disappeared by day 20. Our results suggest that indigenous fungivores are an important constraint for the biocontrol activity of introduced fungi, and sclerotia can provide spatial refuge for biocontrol fungi from the feeding activity of fungivorous nematodes.

Relationship between Planthoppers (Nilaparvata lugens and Sogatella furcifera) and Rice Diseases (멸구류(類)(벼멸구 및 흰등멸구)와 수도병해(水稻病害)의 복합발생피해(複合發生被害)에 관(關)한 연구(硏究))

  • LEE, S.C.;Matias, D.M.;Mew, T.W.;Sorino, J.S.;Heinrichs, E.A.
    • Korean journal of applied entomology
    • /
    • v.24 no.2 s.63
    • /
    • pp.65-70
    • /
    • 1985
  • The locational preference of the brown planthopper (BPH) Nilaparvata lugens ($St{\aa}l$) and the whitebacked plant hopper (WBPH) Sogatella furcifera(Horvath) was studied on rice cultivars IR22 and IR36 as an integral part of subsequent research on insect-fungal pathogen relationships. The BPH was observed to stay consistently on the basal portion while the WBPH showed a general preference for the upper portion regardless of varieties, rice growth stages and insect population density levels. The habitat preference of both species (BPH and WBPH) was found not to be affected by the presence of the other species when both species are present on the same host plant Five rice cultivars with different reactions to BPH biotype 2 were used in the study on BPH-Rhizoctonia solani relationship: IR22 and TN1 (susceptible); Triveni and ASD7 (moderately resistant); and IR42 (resistant). Test plants were inoculated with R. solani (Kuhn) $3{\sim}4$days after insect infestation. Sheath blight disease severity/incidence was significantly higher in the treatment where BPH+R. solani were together than in the treatment with only the pathogen. Symptom expression of the disease in the BPH-pathogen combination was faster and mycelial growth was more profuse inducing the formation of more infection structures. Regardless of varietal reaction to BPH biotype 2, the degree of hopperburn was significantly higher in the combination of the two pests as compared with that of BPH alone. There could be a synergistic relationship between the insect pest and the pathogen indicated by a positive interaction between the two species.

  • PDF

Suppression of the ER-Localized AAA ATPase NgCDC48 Inhibits Tobacco Growth and Development

  • Bae, Hansol;Choi, Soo Min;Yang, Seong Wook;Pai, Hyun-Sook;Kim, Woo Taek
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.57-65
    • /
    • 2009
  • CDC48 is a member of the AAA ATPase superfamily. Yeast CDC48 and its mammalian homolog p97 are implicated in diverse cellular processes, including mitosis, membrane fusion, and ubiquitin-dependent protein degradation. However, the cellular functions of plant CDC48 proteins are largely unknown. In the present study, we performed virus-induced gene silencing (VIGS) screening and found that silencing of a gene encoding a tobacco CDC48 homolog, NgCDC48, resulted in severe abnormalities in leaf and shoot development in tobacco. Furthermore, transgenic tobacco plants (35S:anti-NgCDC48), in which the NgCDC48 gene was suppressed using the antisense RNA method, exhibited severely aberrant development of both vegetative and reproductive organs, resulting in arrested shoot and leaf growth and sterile flowers. Approximately 57-83% of 35S:anti-NgCDC48 plants failed to develop mature organs and died at early stage of development. Scanning electron microscopy showed that both adaxial and abaxial epidermal pavement cells in antisense transgenic leaves were significantly smaller and more numerous than those in wild type leaves. These results indicate that NgCDC48 is critically involved in cell growth and development of tobacco plants. An in vivo targeting experiment revealed that NgCDC48 resides in the endoplasmic reticulum (ER) in tobacco protoplasts. We consider the tantalizing possibility that CDC48-mediated degradation of an as-yet unidentified protein(s) in the ER might be a critical step for cell growth and expansion in tobacco leaves.

Pathotype Classification of Korean Rice Blast Isolates Using Monogenic Lines for Rice Blast Resistance (벼 도열병 단일 저항성 유전자를 이용한 도열병균의 병원형 분류)

  • Kim, Yangseon;Kang, In Jeong;Shim, Hyeong-Kwon;Roh, Jae-Hwan
    • Research in Plant Disease
    • /
    • v.23 no.3
    • /
    • pp.249-255
    • /
    • 2017
  • The rice blast fungus is a representative model phytopathogenic fungus in which Gene-for-Gene interaction with host rice is applicable. After 1980, eight differential varieties have been constructed and classified to analyze the race of rice blast isolates in Korea. However, since there is limited information about the genetic background of rice blast resistance genes within the Korean differentials, scientific analysis on the emergence of new race or resistance break down was difficult. Recently, a differential system has been developed using monogenic resistance lines to understand the interactions of pathogen race and rice resistance genes. In this study, a total of 50 isolates were selected from four different races isolated in Korea, and they were inoculated into monogenic lines. As a result, the isolates in the same race classified by the Korean differential system reacted differently in single monogenic lines. This suggests that the isolates categorized as the same race group contains different avirulence genes and furthermore, it is presumed that the Korean differential system is difficult to provide useful information for breeding program. For this reason, introduction of differential system using monogenic resistance lines is required in addition to the current system.

Tolerance to Potato Soft Rot Disease in Transgenic Potato Expressing Soybean Ferritin Gene (대두 철분결합단백질 유전자 발현 형질전환 감자의 감자무름병 방어 증진효과)

  • Bae, Shin-Chul;Yeo, Yun-Soo;Heu, Sung-Gi;Hwang, Duk-Ju;Byun, Myung-Ok;Go, Seung-Joo
    • Journal of Plant Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.229-233
    • /
    • 2002
  • Ferritin is ubiquitous in bacteria, animals and plants. Ferritin is thought to play two main roles in living cells to provide iron for the synthesis of iron protein such as ferretoxin and cytochromes and to prevent damage from radicals produced by iron/dioxygen interaction. To enhance the resistance of potato to Erwinia carotovora, the soybean ferritin gene was introduced into the potato either under CaMV 35S or hsr203J promoter. Potato transgenic plants were screened by PCR analysis using specific primers to the ferritin gene. Expression of ferritin gene under CaMV 35S and hsr203J promoter in potato transgenic plants was confirmed by northern blot analysis. hsr203J promoter known to pathogen inducible in tobacco drives the induction upon Phytophthora infestan in potato and the transcript level of ferritin gene was extremely high after 24 hours post inoculation. One of transformants under CaMV 35S promoter was increased 2.5 fold than untransformant. Each one of transgenic potato containing gene promoter CaMV 35S and hsr203J-ferrtin fusion exhibited tolerance against potato soft rot.