Browse > Article
http://dx.doi.org/10.5423/RPD.2019.25.2.49

Recessive Resistance: Developing Targets for Genome Editing to Engineer Viral Disease Resistant Crops  

Han, Soo-Jung (Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University)
Heo, Kyeong-Jae (Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University)
Choi, Boram (Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University)
Seo, Jang-Kyun (Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University)
Publication Information
Research in Plant Disease / v.25, no.2, 2019 , pp. 49-61 More about this Journal
Abstract
Plant viruses are among the important pathogens that cause severe crop losses. The most efficient method to control viral diseases is currently to use virus resistant crops. In order to develop the virus resistant crops, a detailed understanding of the molecular interactions between viral and host proteins is necessary. Recessive resistance to a pathogen can be conferred when plant genes essential in the life cycle of a pathogens are deficient, while dominant resistance is mediated by host resistance (R) genes specifically interacting with effector proteins of pathogens. Thus, recessive resistance usually works more stably and broadly than dominant resistance. While most of the recessive resistance genes have so far been identified by forward genetic approaches, recent advances in genome editing technologies including CRISPR/Cas9 have increased interest in using these technologies as reverse genetic tools to engineer plant genes to confer recessive resistance. This review summarizes currently identified recessive resistance genes and introduces reverse genetic approaches to identify host interacting partner proteins of viral proteins and to evaluate the identified genes as genetic resources of recessive resistance. We further discuss recent advances in various precise genome editing technologies and how to apply these technologies to engineer plant immunity.
Keywords
Genome editing; host factors; host-virus interaction; plant virus; recessive resistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gancarz, B. L., Hao, L., He, Q., Newton, M. A. and Ahlquist, P. 2011. Systematic identification of novel, essential host genes affecting bromovirus RNA replication. PLoS One. 6: e23988.   DOI
2 Gao, Z., Johansen, E., Eyers, S., Thomas, C. L., Noel Ellis, T. H. and Maule, A. J. 2004. The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J. 40: 376-385.   DOI
3 Gazo, B. M., Murphy, P., Gatchel, J. R. and Browning, K. S. 2004. A novel interaction of Cap-binding protein complexes eukaryotic initiation factor (eIF) 4F and eIF(iso)4F with a region in the 3'-untranslated region of satellite tobacco necrosis virus. J. Biol. Chem. 279: 13584-13592.   DOI
4 Giner, A., Pascual, L., Bourgeois, M., Gyetvai, G., Rios, P., Pico, B. et al. 2017. A mutation in the melon vacuolar protein sorting 41prevents systemic infection of cucumber mosaic virus. Sci. Rep. 7: 10471.   DOI
5 Hart, J. P. and Griffiths, P. D. 2013. A series of eIF4E alleles at the Bc-3 locus are associated with recessive resistance to clover yellow vein virus in common bean. Theor. Appl. Genet. 126: 2849-2863.   DOI
6 Yamanaka, T., Imai, T., Satoh, R., Kawashima, A., Takahashi, M., Tomita, K. et al. 2002. Complete inhibition of tobamovirus multiplication by simultaneous mutations in two homologous host genes. J. Virol. 76: 2491-2497.   DOI
7 Yang, P., Perovic, D., HabekuB, A., Zhou, R., Graner, A., Ordon, F. et al. 2013. Gene-based high-density mapping of the gene rym7 conferring resistance to Barley mild mosaic virus (BaMMV). Mol. Breed. 32: 27-37.   DOI
8 Yang, P., Lupken, T., Habekuss, A., Hensel, G., Steuernagel, B., Kilian, B. et al. 2014. PROTEIN DISULFIDE ISOMERASE LIKE 5-1 is a susceptibility factor to plant viruses. Proc. Natl. Acad. Sci. U.S.A. 111: 2104-2109.   DOI
9 Ye, C., Dickman, M. B., Whitham, S. A., Payton, M. and Verchot, J. 2011. The unfolded protein response is triggered by a plant viral movement protein. Plant Physiol. 156: 741-755.   DOI
10 Yoshii, M., Yoshioka, N., Ishikawa, M. and Naito, S. 1998a. Isolation of an Arabidopsis thaliana mutant in which accumulation of cucumber mosaic virus coat protein is delayed. Plant J. 13: 211-219.   DOI
11 Ho, Y., Gruhler, A., Heilbut, A., Bader, G. D., Moore, L., Adams, S. L. et al. 2002. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415: 180-183.   DOI
12 Hashimoto, M., Neriya, Y., Yamaji, Y. and Namba, S. 2016a. Recessive resistance to plant viruses: potential resistance genes beyond translation initiation factors. Front. Microbiol. 7: 1695.
13 Hashimoto, M., Neriya, Y., Keima, T., Iwabuchi, N., Koinuma, H., Hagiwara-Komoda, Y. et al. 2016b. EXA1, a GYF domain protein, is responsible for loss-of-susceptibility to plantago asiatica mosaic virus in Arabidopsis thaliana. Plant J. 88: 120-131.   DOI
14 Yoshii, M., Yoshioka, N., Ishikawa, M. and Naito, S. 1998b. Isolation of an Arabidopsis thaliana mutant in which the multiplication of both cucumber mosaic virus and turnip crinkle virus is affected. J. Virol. 72: 8731-8737.   DOI
15 Yoshii, M., Nishikiori, M., Tomita, K., Yoshioka, N., Kozuka, R., Naito, S. et al. 2004. The Arabidopsis cucumovirus multiplication 1 and 2 loci encode translation initiation factors 4E and 4G. J. Virol. 78: 6102-6111.   DOI
16 Yoshii, M., Shimizu, T., Yamazaki, M., Higashi, T., Miyao, A., Hirochika, H. et al. 2009. Disruption of a novel gene for a NAC-domain protein in rice confers resistance to rice dwarf virus. Plant J. 57: 615-625.   DOI
17 Heinlein, M. 2015. Plasmodesmata: channels for viruses on the move. Methods Mol. Biol. 1217: 25-52.   DOI
18 Hilliker, A., Gao, Z., Jankowsky, E. and Parker, R. 2011. The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4F-mRNA complex. Mol. Cell. 43: 962-972.   DOI
19 Hofinger, B. J., Russell, J. R., Bass, C. G., Baldwin, T., dos Reis, M., Hedley, P. E. et al. 2011. An exceptionally high nucleotide and haplotype diversity and a signature of positive selection for the eIF4E resistance gene in barley are revealed by allele mining and phylogenetic analyses of natural populations. Mol. Ecol. 20: 3653-3668.   DOI
20 Ishikawa, M., Obata, F., Kumagai, T. and Ohno T. 1991. Isolation of mutants of Arabidopsis thaliana in which accumulation of tobacco mosaic virus coat protein is reduced to low levels. Mol. Gen. Genet. 230: 33-38.   DOI
21 Ishikawa, M., Naito, S. and Ohno, T. 1993. Effects of the tom1 mutation of Arabidopsis thaliana on the multiplication of tobacco mosaic virus RNA in protoplasts. J. Virol. 67: 5328-5338.   DOI
22 Jiang, J. and Laliberte, J. F. 2011. The genome-linked protein VPg of plant viruses-a protein with many partners. Curr. Opin. Virol. 1: 347-354.   DOI
23 Zong, Y., Wang, Y., Li, C., Zhang, R., Chen, K., Ran, Y. et al. 2017. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35: 438-440.   DOI
24 Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P. et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163: 759-771.   DOI
25 Zhang, L., Chen, H., Brandizzi, F., Verchot, J. and Wang, A. 2015a. The UPR branch IRE1-bZIP60 in plants plays an essential role in viral infection and is complementary to the only UPR pathway in yeast. PLoS Genet. 11: e1005164.   DOI
26 Zhang, X. C., Millet, Y. A., Cheng, Z., Bush, J. and Ausubel, F. M. 2015b. Jasmonate signalling in Arabidopsis involves SGT1b-HSP70-HSP90 chaperone complexes. Nat. Plants 1: 15049.   DOI
27 Zou, L. J., Deng, X. G., Han, X. Y., Tan, W. R., Zhu, L. J., Xi, D. H. et al. 2016. Role of transcription factor HAT1 in modulating arabidopsis thaliana response to cucumber mosaic virus. Plant Cell Physiol. 57: 1879-1889.   DOI
28 Jungkunz, I., Link, K., Vogel, F., Voll, L. M., Sonnewald, S. and Sonnewald, U. 2011. AtHsp70-15-deficient Arabidopsis plants are characterized by reduced growth, a constitutive cytosolic protein response and enhanced resistance to TuMV. Plant J. 66: 983-995.   DOI
29 Jiang, J., Patarroyo, C., Garcia Cabanillas, D., Zheng, H. and Laliberte, J. F. 2015. The vesicle-forming 6K2 protein of turnip mosaic virus interacts with the COPII coatomer Sec24a for viral systemic infection. J. Virol. 89: 6695-6710.   DOI
30 Julio, E., Cotucheau, J., Decorps, C., Volpatti, R., Sentenac, C., Candresse, T. et al. 2015. A eukaryotic translation initiation factor 4E (eIF4E) is responsible for the "va" tobacco recessive resistance to potyviruses. Plant Mol. Biol. Rep. 33: 609-623.   DOI
31 Kang, B. C., Yeam, I. and Jahn, M. M. 2005. Genetics of plant virus resistance. Annu. Rev. Phytopathol. 43: 581-621.   DOI
32 Kang, B. C., Yeam, I., Li, H., Perez, K. W. and Jahn, M. M. 2007. Ectopic expression of a recessive resistance gene generates dominant potyvirus resistance in plants. Plant Biotechnol. J. 5: 526-536.   DOI
33 Keen, N. T. 1990. Gene-for-gene complementarity in plant-pathogen interactions. Annu. Rev. Genet. 24: 447-463.   DOI
34 Kumar, S., Dubey, A. K., Karmakar, R., Kini, K. R., Mathew, M. K. and Prakash, H. S. 2012. Inhibition of TMV multiplication by siRNA constructs against TOM1 and TOM3 genes of Capsicum annuum. J. Virol. Methods 186: 78-85.   DOI
35 Kushner, D. B., Lindenbach, B. D., Grdzelishvili, V. Z., Noueiry, A. O., Paul, S. M. and Ahlquist, P. 2003. Systematic, genome-wide identification of host genes affecting replication of a positivestrand RNA virus. Proc. Natl. Acad. Sci. U.S.A. 100: 15764-15769.   DOI
36 Langner, T., Kamoun, S. and Belhaj, K. 2018. CRISPR crops: Plant genome editing toward disease resistance. Annu. Rev. Phytopathol. 56: 479-512.   DOI
37 Lin, J. W., Ding, M. P., Hsu, Y. H. and Tsai, C. H. 2007. Chloroplast phosphoglycerate kinase, a gluconeogenetic enzyme, is required for efficient accumulation of Bamboo mosaic virus. Nucleic Acids Res. 35: 424-432.   DOI
38 Legg, J. P., Shirima, R., Tajebe, L. S., Guastella, D., Boniface, S., Jeremiah, S. et al. 2014. Biology and management of Bemisia whitefly vectors of cassava virus pandemics in Africa. Pest Manag. Sci. 70: 1446-1453.   DOI
39 Lellis, A. D., Kasschau, K. D., Whitham, S. A. and Carrington, J. C. 2002. Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection. Curr. Biol. 12: 1046-1051.   DOI
40 Lewis, J. D. and Lazarowitz, S. G. 2010. Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cellto-cell transport. Proc. Natl. Acad. Sci. U.S.A. 107: 2491-2496.   DOI
41 Loebenstein, G. and Katis, N. 2014. Control of plant virus diseases seed-propagated crops. Preface. Adv. Virus Res. 90: xi.   DOI
42 Maia, I. G., Haenni, A. and Bernardi, F. 1996. Potyviral HC-Pro: a multifunctional protein. J. Gen. Virol. 77: 1335-1341.   DOI
43 Mann, M., Hendrickson, R. C. and Pandey, A. 2001. Analysis of proteins and proteomes by mass spectrometry. Annu. Rev. Biochem. 70: 437-473.   DOI
44 Martinez-Silva, A. V., Aguirre-Martinez, C., Flores-Tinoco, C. E., Alejandri-Ramirez, N. D. and Dinkova, T. D. 2012. Translation initiation factor AteIF(iso)4E is involved in selective mRNA translation in Arabidopsis thaliana seedlings. PLoS One 7: e31606.   DOI
45 Maule, A. J. 2008. Plasmodesmata: structure, function and biogenesis. Curr. Opin. Plant Biol. 11: 680-686.   DOI
46 Nagy, P. D. 2016. Tombusvirus-Host interactions: Co-Opted evolutionarily conserved host factors take center court. Annu. Rev. Virol. 3: 491-515.   DOI
47 Lee, M. W. and Yang, Y. 2006. Transient expression assay by agroinfiltration of leaves. Methods Mol. Biol. 323: 225-229.
48 Ahlquist, P., Noueiry, A. O., Lee, W. M., Kushner, D. B. and Dye, B. T. 2003. Host factors in positive-strand RNA virus genome replication. J. Virol. 77: 8181-8186.   DOI
49 Ali, Z., Abul-Faraj, A., Piatek, M. and Mahfouz, M. M. 2015. Activity and specificity of TRV-mediated gene editing in plants. Plant Signal Behav. 10: e1044191.   DOI
50 Mayberry, L. K., Allen, M. L., Nitka, K. R., Campbell, L., Murphy, P. A. and Browning, K. S. 2011. Plant cap-binding complexes eukaryotic initiation factors eIF4F and eIFISO4F: molecular specificity of subunit binding. J. Biol. Chem. 286: 42566-42574.   DOI
51 Nagy, P. D. and Pogany, J. 2011. The dependence of viral RNA replication on co-opted host factors. Nat. Rev. Microbiol. 10: 137-149.   DOI
52 Nagy, P. D. and Richardson, C. D. 2012. Viral replication--in search of the perfect host. Curr. Opin. Virol. 2: 663-668.   DOI
53 Nicaise, V., German-Retana, S., Sanjuan, R., Dubrana, M. P., Mazier, M., Maisonneuve, B. et al. 2003. The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the Potyvirus Lettuce mosaic virus. Plant Physiol. 132: 1272-1282.   DOI
54 Nicaise, V., Gallois, J. L., Chafiai, F., Allen, L. M., Schurdi-Levraud, V., Browning, K. S. et al. 2007. Coordinated and selective recruitment of eIF4E and eIF4G factors for potyvirus infection in Arabidopsis thaliana. FEBS Lett. 581: 1041-1046.   DOI
55 Nieto, C., Morales, M., Orjeda, G., Clepet, C., Monfort, A., Sturbois, B. et al. 2006. An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J. 48: 452-462.   DOI
56 Annamalai, P. and Rao, A. L. 2006. Delivery and expression of functional viral RNA genomes in planta by agroinfiltration. Curr. Protoc. Microbiol. 16: B.2.1-B.2.15.
57 Nishikiori, M., Mori, M., Dohi, K., Okamura, H., Katoh, E., Naito, S. et al. 2011. A host small GTP-binding protein ARL8 plays crucial roles in tobamovirus RNA replication. PLoS Pathog. 7: e1002409.   DOI
58 Noueiry, A. O., Chen, J. and Ahlquist, P. 2000. A mutant allele of essential, general translation initiation factor DED1 selectively inhibits translation of a viral mRNA. Proc. Natl. Acad. Sci. U.S.A. 97: 12985-12990.   DOI
59 Amari, K., Boutant, E., Hofmann, C., Schmitt-Keichinger, C., Fernandez-Calvino, L., Didier, P. et al. 2010. A family of plasmodesmal proteins with receptor-like properties for plant viral movement proteins. PLoS Pathog. 6: e1001119.   DOI
60 Amari, K., Di Donato, M., Dolja, V. V. and Heinlein, M. 2014. Myosins VIII and XI play distinct roles in reproduction and transport of tobacco mosaic virus. PLoS Pathog. 10: e1004448.   DOI
61 Aouida, M., Piatek, M. J., Bangarusamy, D. K. and Mahfouz, M. M. 2014. Activities and specificities of homodimeric TALENs in Saccharomyces cerevisiae. Curr. Genet. 60: 61-74.   DOI
62 Aouida, M., Eid, A., Ali, Z., Cradick, T., Lee, C., Deshmukh, H. et al. 2015a. Efficient fdCas9 synthetic endonuclease with improved specificity for precise genome engineering. PLoS One 10: e0133373.   DOI
63 Aouida, M., Li, L., Mahjoub, A., Alshareef, S., Ali, Z., Piatek, A. et al. 2015b. Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae. J. Biosci. Bioeng. 120: 364-371.   DOI
64 Ashby, J., Boutant, E., Seemanpillai, M., Groner, A., Sambade, A., Ritzenthaler, C. et al. 2006. Tobacco mosaic virus movement protein functions as a structural microtubule-associated protein. J. Virol. 80: 8329-8344.   DOI
65 Ouibrahim, L., Mazier, M., Estevan, J., Pagny, G., Decroocq, V., Desbiez, C. et al. 2014. Cloning of the Arabidopsis rwm1 gene for resistance to Watermelon mosaic virus points to a new function for natural virus resistance genes. Plant J. 79: 705-716.   DOI
66 Noueiry, A. O., Diez, J., Falk, S. P., Chen, J. and Ahlquist, P. 2003. Yeast Lsm1p-7p/Pat1p deadenylation-dependent mRNA-decapping factors are required for brome mosaic virus genomic RNA translation. Mol. Cell Biol. 23: 4094-4106.   DOI
67 Ohshima, K., Taniyama, T., Yamanaka, T., Ishikawa, M. and Naito, S., 1998. Isolation of a mutant of Arabidopsis thaliana carrying two simultaneous mutations affecting tobacco mosaic virus multiplication within a single cell. Virology 243: 472-481.   DOI
68 Orjuela, J., Deless, E. F., Kolade, O., Cheron, S., Ghesquiere, A. and Albar, L. 2013. A recessive resistance to rice yellow mottle virus is associated with a rice homolog of the CPR5 gene, a regulator of active defense mechanisms. Mol. Plant-Microbe Interact. 26: 1455-1463.   DOI
69 Ouko, M. O., Sambade, A., Brandner, K., Niehl, A., Pena, E., Ahad, A. et al. 2010. Tobacco mutants with reduced microtubule dynamics are less susceptible to TMV. Plant J. 62: 829-839.   DOI
70 Barakate, A. and Stephens, J. 2016. An overview of CRISPR-based tools and their improvements: New opportunities in understanding plant-pathogen interactions for better crop protection. Front. Plant Sci. 7: 765.
71 Barrangou, R. and Marraffini, L. A. 2014. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol. Cell 54: 234-244.   DOI
72 Poque, S., Pagny, G., Ouibrahim, L., Chague, A., Eyquard, J. P., Caballero, M. et al. 2015. Allelic variation at the rpv1 locus controls partial resistance to Plum pox virus infection in Arabidopsis thaliana. BMC Plant Biol. 15: 159.   DOI
73 Patrick, R. M., Mayberry, L. K., Choy, G., Woodard, L. E., Liu, J. S., White, A. et al. 2014. Two Arabidopsis loci encode novel eukaryotic initiation factor 4E isoforms that are functionally distinct from the conserved plant eukaryotic initiation factor 4E. Plant Physiol. 164: 1820-1830.   DOI
74 Perez, K., Yeam, I., Kang, B. C., Ripoll, D. R., Kim, J., Murphy, J. F. et al. 2012. Tobacco etch virus infectivity in Capsicum spp. is determined by a maximum of three amino acids in the viral virulence determinant VPg. Mol. Plant-Microbe Interact. 25: 1562-1573.   DOI
75 Piatek, A. and Mahfouz, M. M. 2017. Targeted genome regulation via synthetic programmable transcriptional regulators. Crit. Rev. Biotechnol. 37: 429-440.   DOI
76 Pyott, D. E., Sheehan, E. and Molnar, A. 2016. Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol. Plant Pathol. 17: 1276-1288.   DOI
77 Quetier, F. 2016. The CRISPR-Cas9 technology: Closer to the ultimate toolkit for targeted genome editing. Plant Sci. 242: 65-76.   DOI
78 Ransom-Hodgkins, W. D. 2009. The application of expression analysis in elucidating the eukaryotic elongation factor one alpha gene family in Arabidopsis thaliana. Mol. Genet. Genomics 281: 391-405.   DOI
79 Robaglia, C. and Caranta, C. 2006. Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci. 11: 40-45.   DOI
80 Beauchemin, C., Boutet, N. and Laliberte, J. F. 2007. Visualization of the interaction between the precursors of VPg, the viral protein linked to the genome of turnip mosaic virus, and the translation eukaryotic initiation factor iso 4E in Planta. J. Virol. 81: 775-782.   DOI
81 Belov, G. A. and van Kuppeveld, F. J. 2012. (+)RNA viruses rewire cellular pathways to build replication organelles. Curr. Opin. Virol. 2: 740-747.   DOI
82 Blanc, S., Lopez-Moya, J. J., Wang, R., Garcia-Lampasona, S., Thornbury, D. W. and Pirone, T. P. 1997. A specific interaction between coat protein and helper component correlates with aphid transmission of a potyvirus. Virology 231: 141-147.   DOI
83 Carrasco, J. L., Ancillo, G., Castello, M. J. and Vera, P. 2005. A novel DNA-binding motif, hallmark of a new family of plant transcription factors. Plant Physiol. 137: 602-606.   DOI
84 Castello, M. J., Carrasco, J. L. and Vera, P. 2010. DNA-binding protein phosphatase AtDBP1 mediates susceptibility to two potyviruses in Arabidopsis. Plant Physiol. 153: 1521-1525.   DOI
85 Ruffel, S., Gallois, J. L., Lesage, M. L. and Caranta, C. 2005. The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Mol. Genet. Genomics 274: 346-353.   DOI
86 Roudet-Tavert, G., German-Retana, S., Delaunay, T., Delecolle, B., Candresse, T. and Le Gall, O. 2002. Interaction between potyvirus helper component-proteinase and capsid protein in infected plants. J. Gen. Virol. 83: 1765-1770.   DOI
87 Roudet-Tavert, G., Michon, T., Walter, J., Delaunay, T., Redondo, E. and Le Gall, O. 2007. Central domain of a potyvirus VPg is involved in the interaction with the host translation initiation factor eIF4E and the viral protein HcPro. J. Gen. Virol. 88: 1029-1033.   DOI
88 Ruffel, S., Dussault, M. H., Palloix, A., Moury, B., Bendahmane, A., Robaglia, C. et al. 2002. A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J. 32: 1067-1075.   DOI
89 Cermak, T., Curtin, S. J., Gil-Humanes, J., Cegan, R., Kono, T. J. Y., Konecna, E. et al. 2017. A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29: 1196-1217.   DOI
90 Cavatorta, J., Perez, K. W., Gray, S. M., Van Eck, J., Yeam, I. and Jahn, M. 2011. Engineering virus resistance using a modified potato gene. Plant Biotechnol. J. 9: 1014-1021.   DOI
91 Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M. et al. 2016. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 17: 1140-1153.   DOI
92 Cheng, X., Li, F., Cai, J., Chen, W., Zhao, N., Sun, Y. et al. 2015. Artificial TALE as a convenient protein platform for engineering broadspectrum resistance to begomoviruses. Viruses 7: 4772-4782.   DOI
93 Stella, S. and Montoya, G. 2016. The genome editing revolution: A CRISPR-Cas TALE off-target story. Bioessays 38: S4-S13.   DOI
94 Ruffel, S., Gallois, J. L., Moury, B., Robaglia, C., Palloix, A. and Caranta, C. 2006. Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper. J. Gen. Virol. 87: 2089-2098.   DOI
95 Sambade, A., Brandner, K., Hofmann, C., Seemanpillai, M., Mutterer, J. and Heinlein, M. 2008. Transport of TMV movement protein particles associated with the targeting of RNA to plasmodesmata. Traffic 9: 2073-2088.   DOI
96 Choi, S. H., Nakahara, K. S., Andrade, M. and Uyeda, I. 2012. Characterization of the recessive resistance gene cyv1 of Pisum sativum against Clover yellow vein virus. J. Gen. Plant Pathol. 78: 269-276.   DOI
97 Clement, M., Leonhardt, N., Droillard, M. J., Reiter, I., Montillet, J. L., Genty, B. et al. 2011. The cytosolic/nuclear HSC70 and HSP90 molecular chaperones are important for stomatal closure and modulate abscisic acid-dependent physiological responses in Arabidopsis. Plant Physiol. 156: 1481-1492.   DOI
98 Curtin, S. J., Zhang, F., Sander, J. D., Haun, W. J., Starker, C., Baltes, N. J. et al. 2011. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol. 156: 466-473.   DOI
99 Sato, M., Nakahara, K., Yoshii, M., Ishikawa, M. and Uyeda, I. 2005. Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses. FEBS Lett. 579: 1167-1171.   DOI
100 Seo, J. K., Choi, H. S. and Kim, K. H. 2016. Engineering of soybean mosaic virus as a versatile tool for studying protein-protein interactions in soybean. Sci. Rep. 6: 22436.   DOI
101 Truniger, V. and Aranda, M. A. 2009. Recessive resistance to plant viruses. Adv. Virus Res. 75: 119-159.   DOI
102 Tsujimoto, Y., Numaga, T., Ohshima, K., Yano, M. A., Ohsawa, R., Goto, D. B. et al. 2003. Arabidopsis TOBAMOVIRUS MULTIPLICATION (TOM) 2 locus encodes a transmembrane protein that interacts with TOM1. EMBO J. 22: 335-343.   DOI
103 Uchiyama, A., Shimada-Beltran, H., Levy, A., Zheng, J. Y., Javia, P. A. and Lazarowitz, S. G. 2014. The Arabidopsis synaptotagmin SYTA regulates the cell-to-cell movement of diverse plant viruses. Front. Plant Sci. 5: 584.
104 Vaghchhipawala, Z., Rojas, C. M., Senthil-Kumar, M. and Mysore, K. S. 2011. Agroinoculation and agroinfiltration: simple tools for complex gene function analyses. Methods Mol. Biol. 678: 65-76.   DOI
105 Diaz-Pendon, J. A., Truniger, V., Nieto, C., Garcia-Mas, J., Bendahmane, A. and Aranda, M. A. 2004. Advances in understanding recessive resistance to plant viruses. Mol. Plant Pathol. 5: 223-233.   DOI
106 de Castro, I.F., Volonte, L. and Risco, C. 2013. Virus factories: biogenesis and structural design. Cell Microbiol. 15: 24-34.   DOI
107 den Boon, J.A., Diaz, A. and Ahlquist, P. 2010. Cytoplasmic viral replication complexes. Cell Host Microbe 8: 77-85.   DOI
108 Diaz, A. and Wang, X. 2014. Bromovirus-induced remodeling of host membranes during viral RNA replication. Curr. Opin. Virol. 9: 104-110.   DOI
109 Diez, J., Ishikawa, M., Kaido, M. and Ahlquist, P. 2000. Identification and characterization of a host protein required for efficient template selection in viral RNA replication. Proc. Natl. Acad. Sci. U.S.A. 97: 3913-3918.   DOI
110 Doudna, J. A. and Charpentier, E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346: 1258096.   DOI
111 Wang, A. and Krishnaswamy, S. 2012. Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Mol. Plant Pathol. 13: 795-803.   DOI
112 Vasilescu, J. and Figeys, D. 2006. Mapping protein-protein interactions by mass spectrometry. Curr. Opin. Biotechnol. 17: 394-399.   DOI
113 Vijayapalani, P., Maeshima, M., Nagasaki-Takekuchi, N. and Miller, W. A. 2012. Interaction of the trans-frame potyvirus protein P3N-PIPO with host protein PCaP1 facilitates potyvirus movement. PLoS Pathog. 8: e1002639.   DOI
114 Wang, A. 2015. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu. Rev. Phytopathol. 53: 45-66.   DOI
115 Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C. et al. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32: 947-951.   DOI
116 Whitham, S. A., Yamamoto, M. L. and Carrington, J. C. 1999. Selectable viruses and altered susceptibility mutants in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 96: 772-777.   DOI
117 Wittmann, S., Chatel, H., Fortin, M. G. and Laliberte, J. F. 1997. Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology 234: 84-92.   DOI
118 Dunoyer, P., Thomas, C., Harrison, S., Revers, F. and Maule, A., 2004. A cysteine-rich plant protein potentiates Potyvirus movement through an interaction with the virus genome-linked protein VPg. J. Virol. 78: 2301-2309.   DOI
119 Feng, Z., Xue, F., Xu, M., Chen, X., Zhao, W., Garcia-Murria, M.J. et al. 2016. The ER-membrane transport system is critical for intercellular trafficking of the NSm movement protein and tomato spotted wilt tospovirus. PLoS Pathog. 12: e1005443.   DOI
120 Fraser, R. S. S. 1990. The genetics of resistance to plant viruses. Annu. Rev. Phytopathol. 28: 179-200.   DOI
121 Wright, A. V., Nunez, J. K. and Doudna, J. A. 2016. Biology and applications of CRISPR systems: Harnessing nature's toolbox for genome engineering. Cell 164: 29-44.   DOI
122 Yamanaka, T., Ohta, T., Takahashi, M., Meshi, T., Schmidt, R., Dean, C. et al. 2000. TOM1, an Arabidopsis gene required for efficient multiplication of a tobamovirus, encodes a putative transmembrane protein. Proc. Natl. Acad. Sci. U.S.A. 97: 10107-10112.   DOI