• Title/Summary/Keyword: plant lactic acid bacteria

Search Result 95, Processing Time 0.03 seconds

Inactivation of Foodborne Pathogens by Lactic Acid Bacteria

  • Daliri, Frank;Aboagye, Agnes Achiaa;Daliri, Eric Banan-Mwine
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.5
    • /
    • pp.419-429
    • /
    • 2020
  • The problems caused by foodborne pathogens are not only a concern to the food industry but also with regard to global public health. Over the years, fermentation technology has proved to be one of the cheapest and safest methods for inactivating and controlling pathogenic microorganisms in food. Scientific evidence shows that lactic acid bacteria fermentation exerts significant antimicrobial effect against pathogenic bacteria and viruses. Lactic acid bacteria metabolites such as organic acids, bacteriocins and hydrogen peroxides have adverse effects on foodborne pathogens which lead to their inhibition. These compounds do not only cause physical injuries, but also have significant effects on the pathogens' gene expression. Furthermore, the presence of lactic acid bacteria in food provides nutritional competition among foodborne pathogens, and all these factors together suppress their growth. This study reviews our current knowledge of the antimicrobial abilities of lactic acid bacteria, their molecular mechanisms, and their application for inactivating foodborne pathogens.

Growth Responses of Lactic Acid Bacteria to Leguminous Seed Extracts (콩과식물 종실 추출물의 유산균에 대한 생육반응)

  • Lee, Hoi-Seon;Ahn, Young-Joon
    • Applied Biological Chemistry
    • /
    • v.40 no.2
    • /
    • pp.167-171
    • /
    • 1997
  • Methanol extracts from 25 seed samples belonging to the family Leguminosae were subjected to an in vitro screening for their growth-promoting and inhibitory activities towards Bifidobacterium adolescentis, B. longum, B. bifidum, and Lactobacillus casei, using spectrophotometric and paper disc agar diffusion methods under $O_2-free$ conditions, respectively. The responses varied with both bacterial strains and plant species. Among seed extracts, extracts from Glycine max (light-green color) and Arachis hypogaea (dark-brown) enhanced the growth of lactic acid bacteria in media with or without carbon sources, suggesting that bifidus factor(s) might be involved in the phenomenon. This growth-promoting effect was most pronounced with L. casei among lactic acid bacteria used. Additionally, all seed extracts did not adversely affect the growth of the lactic acid bacteria tested.

  • PDF

The improvement effect of anti-inflammation of Aronia extract that fermented by Lactic acid bacteria isolated from the fermented seafoods

  • Lim, Jeong-Muk;Choi, Ui-Lim;Lee, Jeong-Ho;Moon, Kwang Hyun;Kim, Dae Geun;Jeong, Kyung Ok;Im, So Yeon;Oh, Byung-Taek
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.111-111
    • /
    • 2018
  • Aronia (black chokeberry), a species of berries is source to a very large number of bioactive compounds like polyphenols, flavonoids, anthocyanins, and tannins in comparison to any other species. Owing to its antioxidant, anti-carcinogenic, anti-aging and anti-inflammatory properties. Fermentation- a bioconversion process exploiting the biological metabolic reaction of micro-organisms, has several benefits like improving the efficacy and safety of physiologically active substances, generation of new functional material, improving the adsorption rate and many others. Antigens like pathogens, food, pollen etc., generate a protective immune response in body tissues, and the process be referred to as inflammation. However, this when excessive results in a condition referred to as refractory inflammatory disease, whose incidence is increasing in the recent times, especially amongst children. The current study intended to assess the anti-oxidant activity, presence of polyphenols and anti-inflammatory efficacy of Aronia extract fermented by Lactic acid bacteria isolated from fermented sea foods. Aronia fruits collected from Sunchang, Chonbuk were lyophilized for fermentation. So as to maximise the efficacy of the fermented Aronia extract, the quantitative effects of lactic acid bacteria species, composition of extraction solution, influence of temperature and time on antioxidant activity and total polyphenol contents were investigated using an experimental design. Anti-inflammatory activity was evaluated on NO and cytokine ($TNF-{\alpha}$, IL-6) production in LPS activated Raw 264.7 cells. Results indicated that antioxidant effect and total polyphenol contents were best improved in extract of Aronia fermented by P. pentosaceus. In addition, NO and cytokine ($TNF-{\alpha}$, IL-6) levels were decreased significantly after fermentation. Thus, it was found that the anti-inflammatory activity of Aronia greatly increased after fermentation process using P. pentosaceus.

  • PDF

Identification and Distribution of predominant tactic Acid Bacteria in Kimchi, a Korean Traditional Fermented Food

  • Kim, Tae-Woon;Lee, Ji-Yeon;Jung, Sang-Hoon;Kim, Young-Mok;Jo, Jae-Sun;Chung, Dae-Kyun;Lee, Hyong-Joo;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.635-642
    • /
    • 2002
  • To effectively investigate the identification and distribution of the lactic acid bacteria in Kimchi, polyphasic methods, including a PCR, SDS-PAGE of the whole-cell proteins, and 16S rRNA gene sequence analysis, were used. In various types of Kimchi fermented at 20$\^{C}$, the isolate KHU-31 was found to be the predominant lactic acid bacteria. This isolate was identified as Lactobacillus sake KHU-31, based on SDS-PAGE of the whole-cell proteins and a 165 rRNA gene sequence analysis, which provided accurate and specific results. Accordingly, the approach used in the current study demonstrated that Lactobacillus sake KHU-31, together with Leuconostoc mesenteroides, were the most predominant lactic acid bacteria in all types of Kimchi in the middle stage of fermentation at 20$\^{C}$.

Total Polyphenol Contents, Flavonoid Contents, and Antioxidant Activity of Roasted-flaxseed Extracts Based on Lactic-acid Bacteria Fermentation (유산균 발효에 따른 볶은 아마씨 추출물의 폴리페놀, 플라보노이드 함량 및 항산화 활성)

  • Park, Ye-Eun;Kim, Byung-Hyuk;Yoon, Yeo-Cho;Kim, Jung-Kyu;Lee, Jun-Hyeong;Kwon, Gi-Seok;Hwang, Hak Soo;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.547-554
    • /
    • 2018
  • Flaxseed (Linum usitatissimum L.), also called linseed and one of the raw materials for making linen, is rich in omega-3 fatty acids, vegetable estrogen, ${\alpha}$-linolenic acid, and dietary fiber. Studies on flaxseed have reported various additional effects, such as the inhibition of cholesterol, blood clotting, and tumor growth. In this study, we investigated the functional components of flaxseed fermented with lactic-acid bacteria. Lactic-acid bacteria was inoculated into heat-treated (roasted) flaxseed and fermented at $37^{\circ}C$ for 72 hr. The fermented flaxseed was extracted with 70% ethanol and the antioxidant effect of the fermented extracts according to the lactic-acid bacteria was analyzed. It was confirmed that the total polyphenol contents had expanded by about 1.5-8 times, and the total flavonoid contents had increased around 1.2 times in the case of fermented flaxseed with lactic-acid bacteria compared to non-fermented flaxseed (NFFS). DPPH radical scavenging and superoxide dismutase-like activities had increased around 5.6 and 2.3 times, respectively, in the fermented flaxseed compared to the NFFS at 100 ppm concentration. The study concluded that fermentation of flaxseed with lactic-acid bacteria is possible and that it is effective to increase the antioxidant effects of flaxseed. These results can be applied to the development of improved foods and cosmetic materials.

Effect of Plant (Salvia sp.) Growth Using Mixed Microorganisms (혼합 미생물이 식물(Salvia)의 생장에 미치는 영향)

  • Choi, Kyung-Min;Park, Eung-Roh;Ju, Hong-Shin;Yang, Jae-Kyung;Suh, Jeung-Keun;Lee, Sung-Taik;Park, Chang-Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.2
    • /
    • pp.27-33
    • /
    • 1996
  • Effect of effective microorganisms on the growth of plant (salvia sp.) was investigated. Microorganisms used were photosynthetic bacteria, lactic acid bacteria and yeasts. When photosynthetic bacteria were inoculated to soil by 100 dilution, treated plants showed 160% growth by length compared to control. When photosynthetic bacteria, lactic acid bacteria and yeasts were mixed, diluted by 10 and inoculated to soil, the plants showed 212% growth compared to control. Microbial populations were increased in the treated soil.

  • PDF

Antioxidant and Whitening Effects of the Fermentation of Barley Seeds (Hordeum vulgare L.) Using Lactic Acid Bacteria (유산균을 이용한 보리의 발효를 통한 항산화 및 미백 효과)

  • Lee, Jun-Hyeong;Yoon, Yeo-Cho;Kim, Jung-Kyu;Park, Ye-Eun;Hwang, Hak-Soo;Kwon, Gi-Seok;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.444-453
    • /
    • 2018
  • Barley (Hordeum vulgare L.), of the Poaceae/Gramineae family, is a common grain in the surrounding area. It has been used in Ancient Egyptian medicine and it has been used worldwide for many years as food and as an ingredient in beer. Barley has been reported to have anti-inflammatory, anti -carcinogenic and anti-diabetic effects. So far, a lot of research has been done on barley but the effects of fermented barley seeds with lactic acid bacteria have not been studied largely. In this study, we investigated the effects of ethanol-extracted barley seeds after their fermentation with lactic acid bacteria. The biological activities of fermented barley seeds with lactic acid bacteria and non-fermented barley seeds were analyzed for total polyphenol content, total flavonoid content, DPPH radical scavenging, superoxide dismutase-like activity and tyrosinase inhibition. These results showed that fermented barley seeds with lactic acid bacteria have more advanced anti-oxidant and whitening properties than non-fermented barley seeds. Hence, we suggest that fermenting barley seeds with lactic acid bacteria can be an impressive material in the food and cosmetic industries.

오미자(Schizandra chinensis)추출물이 김치 숙성에 미치는 영향

  • 이신호;최우정;임용숙
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.229-234
    • /
    • 1997
  • Shizandra chinensis(SC) and Pinus regida(PR) showed antimicrobial activity against 3 strains(B-5, D-1, A-1) of lactic acid bacteria(LAB) isolated from kimchi among eight kinds of plant extracts such as Shizandra chinensis, Phellodendron amurense, ornus officinalis, Pinus regida, Allium tuberosum, Machilus thunbergii, Cyperus rotundus and Schizonepeta tenuifloia. The growth of LAB was inhibited apparently in modified MRS broth containing 1% Schizandra chinensis at $35^{\circ}C$. Pinus regida showed weaker inhibitory effect on the growth of isolated LAB than Shizandra chinensis. pH of SC added kimchi did not change greatly compare with control during 25 days of fermentation. Degree of titratable acidity change and ratio of reducing sugar utilization in control were more higher than in SC added kimchi during fermentation. Growth of total bacteria and lactic acid bacteria was inhibited about 1 to 2 $log_10$ cycle by addition of SC extracts during kimchi fermentation for 10 days at $10^{\circ}C$. Fermentation of kimchi was delaved about 5 to 7 days by addition of 1 or 2% of SC. extract, but sensory quality (falvor, taste and overall acceptability) of SC added kimchi was lower than that of control (p>0.05).

  • PDF

In vitro Characterization of Bacteriocin Produced by Lactic Acid Bacteria Isolated from Nem Chua, a Traditional Vietnamese Fermented Pork

  • Pilasombut, Komkhae;Rumjuankiat, Kittaporn;Ngamyeesoon, Nualphan;Duy, Le Nguyen Doan
    • Food Science of Animal Resources
    • /
    • v.35 no.4
    • /
    • pp.473-478
    • /
    • 2015
  • The aim of this study was to screen and In vitro characterize the properties of bacteriocin produced by lactic acid bacteria isolated from Vietnamese fermented pork (Nem chua). One hundred and fifty LAB were isolated from ten samples of Nem chua and screened for bacteriocin-producing lactic acid bacteria. Antimicrobial activity of bacteriocin was carried out by spot on lawn method against both gram positive and gram negative bacteria. One isolate, assigned as KL-1, produced bacteriocin and showed inhibitory activity against Lactobacillus sakei, Leuconostoc mesenteroides and Enterococcus faecalis. To characterize the bacteriocin-producing strain, optimum temperature, incubation period for maximum bacteriocin production and identification of bacteriocin-producing strain were determined. It was found that the optimum cultivation temperature of the strain to produce the maximum bacteriocin activity (12,800 AU/mL) was obtained at 30℃. Meanwhile, bacteriocin production at 6,400 AU/mL was found when culturing the strain at 37℃ and 42℃. The isolate KL-1 was identified as L. plantarum. Antimicrobial activity of cell-free supernatant was completely inhibited by proteolytic enzyme of trypsin, alpha-chymotrypsin and proteinase K. Bacteriocin activity was stable at high temperature up to 100℃ for 10 min and at 4℃ storage for 2 d. However, the longer heating at 100℃ and 4℃ storage, its activity was reduced.

Effects of Treating Whole-plant or Chopped Rice Straw Silage with Different Levels of Lactic Acid Bacteria on Silage Fermentation and Nutritive Value for Lactating Holsteins

  • Zhang, Y.G.;Xin, H.S.;Hua, J.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.12
    • /
    • pp.1601-1607
    • /
    • 2010
  • Two experiments were carried out to investigate i) the effects of four levels of lactic acid bacteria inoculants (LAB; 0, $2{\times}10^5$, $3{\times}10^5$ and $4{\times}10^5$ cfu/g fresh forage) and two physical forms of rice straw (whole and chopped rice straw) on silage fermentation quality and nutritive value of rice straw (RS) silage for lactating Holsteins and ii) the effects of the replacement of corn silage (CS) with different inclusion levels (0, 25 and 50%) of LAB treated RS on lactating performance of Holstein dairy cows. Rice straw packed with stretch film was ensiled for 45 d. The results showed that the higher level of LAB inoculants in the silage quadratically decreased pH, $NH_3$-N and acetic acid concentrations and increased the contents of lactic acid and total organic acids. The CP content and DM losses in the silage declined linearly as the level of LAB addition was increased. Compared with whole-plant rice straw silage (WRS), chopped rice straw silage (CRS) dramatically reduced pH by 0.83. The concentrations of $NH_3$-N were similar in WRS and CRS and both were less than 50 g/kg of total N. Chopping rice straw before ensiling significantly enhanced the lactic acid concentration and total organic acids content whereas the concentration of acetic acid declined. The CP, NDF and ADF content of CRS was 13.4, 5.9 and 10.2% lower than in WRS, respectively. Except for butyric acid concentration, significant interaction effects of inoculation level and physical form of RS were found on all fermentation end-products. Our findings indicated that milk yield and composition were not affected by different level of RS inclusion. However, because of the lower cost of WRS, cows consuming a ration in which WRS was partially substituted for CS had 3.48 Yuan (75% CS+25% WRS) and 4.56 Yuan (50% CS+50% WRS) more economic benefit over those fed a CS-based ration. It was concluded that the chopping process and LAB addition could improve the silage quality, and that substitution of corn silage with RS silage lowered the cost of the dairy cow ration without impairing lactation performance.