• 제목/요약/키워드: plant immune response

검색결과 93건 처리시간 0.032초

Identification of Gene Expression Signatures in the Chicken Intestinal Intraepithelial Lymphocytes in Response to Herb Additive Supplementations

  • Won, Kyeong-Hye;Song, Ki-Duk;Park, Jong-Eun;Kim, Duk-Kyung;Na, Chong-Sam
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권10호
    • /
    • pp.1515-1521
    • /
    • 2016
  • Anethole and garlic have an immune modulatory effects on avian coccidiosis, and these effects are correlated with gene expression changes in intestinal epithelial lymphocytes (IELs). In this study, we integrated gene expression datasets from two independent experiments and investigated gene expression profile changes by anethole and garlic respectively, and identified gene expression signatures, which are common targets of these herbs as they might be used for the evaluation of the effect of plant herbs on immunity toward avian coccidiosis. We identified 4,382 and 371 genes, which were differentially expressed in IELs of chickens supplemented with garlic and anethole respectively. The gene ontology (GO) term of differentially expressed genes (DEGs) from garlic treatment resulted in the biological processes (BPs) related to proteolysis, e.g., "modification-dependent protein catabolic process", "proteolysis involved in cellular protein catabolic process", "cellular protein catabolic process", "protein catabolic process", and "ubiquitin-dependent protein catabolic process". In GO analysis, one BP term, "Proteolysis", was obtained. Among DEGs, 300 genes were differentially regulated in response to both garlic and anethole, and 234 and 59 genes were either up- or down-regulated in supplementation with both herbs. Pathway analysis resulted in enrichment of the pathways related to digestion such as "Starch and sucrose metabolism" and "Insulin signaling pathway". Taken together, the results obtained in the present study could contribute to the effective development of evaluation system of plant herbs based on molecular signatures related with their immunological functions in chicken IELs.

Immunization of Mice with Recombinant Brucella abortus Organic Hydroperoxide Resistance (Ohr) Protein Protects Against a Virulent Brucella abortus 544 Infection

  • Hop, Huynh Tan;Reyes, Alisha Wehdnesday Bernardo;Simborio, Hannah Leah Tadeja;Arayan, Lauren Togonon;Min, Won Gi;Lee, Hu Jang;Lee, Jin Ju;Chang, Hong Hee;Kim, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권1호
    • /
    • pp.190-196
    • /
    • 2016
  • In this study, the Brucella abortus ohr gene coding for an organic hydroperoxide resistance protein (Ohr) was cloned into a maltose fusion protein expression system (pMAL), inserted into Escherichia coli, and purified, and its immunogenicity was evaluated by western blot analysis using Brucella-positive mouse sera. The purified recombinant Ohr (rOhr) was treated with adjuvant and injected intraperitoneally into BALB/c mice. A protective immune response analysis revealed that rOhr induced a significant increase in both the IgG1 and IgG2a titers, and IgG2a reached a higher level than IgG1 after the second and third immunizations. Additionally, immunization with rOhr induced high production of IFN-γ as well as proinflammatory cytokines such as TNF, MCP-1, IL-12p70, and IL-6, but a lesser amount of IL-10, suggesting that rOhr predominantly elicited a cell-mediated immune response. In addition, immunization with rOhr caused a significantly higher degree of protection against a virulent B. abortus infection compared with a positive control group consisting of mice immunized with maltose-binding protein. These findings showed that B. abortus rOhr was able to induce both humoral and cell-mediated immunity in mice, which suggested that this recombinant protein could be a potential vaccine candidate for animal brucellosis.

Synbiotics (mixture of probiotics and prebiotics) ameliorates DSS-induced ulcerative colitis in vivo.

  • Jeon, Yong-Deok;AYE, AYE;Song, Young-Jae;Kang, Sa-Haeng;Soh, Ju-Ryun;Kim, Dae-Ki;Myung, Hyun;Jin, Jong-Sik
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.107-107
    • /
    • 2019
  • Ulcerative colitis (UC) is one of inflammatory bowel disease (IBD), characterized by chronic inflammatory response and dysregulation of immune function. The severity of US has been influenced by environmental factors and food habit. The immune modulatory, anti-inflammatory and steroidal medicine have been used for the treatment of UC. However, long-term administration of those medicine is accompanied with side-effect. So, it is necessary to develop the non side-effect medicine using natural product. Prebiotics influences intestinal condition and food consumption. The heredity, immunity and environmental condition are related with occurrence of UC. In recent study, UC patients had lower level of prebiotics such as Lactobacillus and Bifidobacterium compared with healthy people. Also, previous study announced that imbalance of enteric flora aggravates the severity of UC. The effectiveness of probiotics might affect colon ability and viable bacteria also could promote the proliferation of beneficial intestinal bacteria. Prebiotics, such as herbal medicine, could lead to balance of intestinal bacteria or increase beneficial bacteria. So, proper choice of herbal medicine could control the intestinal condition. This study aimed to investigate the effect of mixture of probiotics and prebiotics (synbiotics) on dextran sulfate sodium (DSS)-induced UC in vivo. The synbiotics consist of Lactobacillus buchneri, Polymnia sonchifolia and Glycine max Merr. in this study. To evaluate the effect of synbiotics, 3% DSS was administered in BALB/c mice and synbiotics was daily administered for experimental days. The administration of synbiotics regulated colon length shortening, body weight change and disease activity index effectively. Also, extract of synbiotics upregulated survival ability of Lactobacillus buchneri in gut condition. These results suggest that mixture of probiotics and prebiotics, called as synbiotics, could influence intestinal condition also regulate the colon disease. Synbiotics might be a therapeutic agent for treatment of UC.

  • PDF

USE OF PREBIOTICS, PROBIOTICS AND SYNBIOTICS IN CLINICAL IMMUNONUTRITION

  • Bengmark Stig
    • 한국식품영양과학회:학술대회논문집
    • /
    • 한국식품영양과학회 2001년도 International Symposium on Food,Nutrition and Health for 21st Century
    • /
    • pp.187-231
    • /
    • 2001
  • It is a recent observation that about 80 per cent of the body's immune system is localized in the gastrointestinal tract. This explains to a large extent why eating right is important for the modulation the immune response and prevention of disease. I addition it is increasingly recognized that the body has an important digestive system also in the lower gastrointestinal tract where numerous important substances are released by microbial enzymes and absorbed. Among these substances are short chain fatty acids, amino acids, various carbohydrates, polyamines, growth factors, coagulation factors, and many thousands of antioxidants, not only traditional vitamins but numerous flavonoids, carotenoids and similar plant- and vegetable produced antioxidants. Also consumption of health-promoting bacteria (probiotics) and vegetable fibres (prebiotics) from numerous sources are known to have strong health-promoting influence. It has been calculated that the intestine harbours about 300 000 genes, which is much more than the calculated about 60000 for the rest of the human body, indicating a till today totally unexpected metabolic activity in this part of the GI tract. There are seemingly several times more active enzymes in the intestine than in the rest of the body, ready to release hundred thousand or more of substances important for our health and well-being. In addition do the microbial cells produce signal molecules similar to cytokines but called bacteriokines and nitric oxide, with provide modulatory effects both on the mucosal cells, the mucosa-associated lymphoid system (MALT) and the rest of the immune system. Identification of various fermentation products, and often referred to as synbiotics, studies of their role in maintaining health and well-being should be a priority issue during the years to come.

  • PDF

Simple adaptive control of seismically excited structures with MR dampers

  • Amini, F.;Javanbakht, M.
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.275-290
    • /
    • 2014
  • In this paper, Simple Adaptive Control (SAC) method is used to mitigate the detrimental effects of earthquakes on MR-damper equipped structures. Acceleration Feedback (AF) is utilized since measuring the acceleration response of structures is known to be reliable and inexpensive. The SAC is simple, fast and as an adaptive control scheme, is immune against the effects of plant and environmental uncertainties. In the present study, in order to translate the desired control force into an applicable MR damper command voltage, a neural network inverse model is trained, validated and used through the simulations. The effectiveness of the proposed AF-based SAC control system is compared with optimal H2/LQG controllers through numerical investigation of a three-story model building. The results indicate that the SAC controller is substantially effective and reliable in both undamaged and damaged structural states, specifically in reducing acceleration responses of seismically excited buildings.

Expression of Helicobacter pylori urease in plants to use as an edible vaccine

  • 강귀현;한소천;강태진;양문식
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XIII)
    • /
    • pp.186-189
    • /
    • 2003
  • Helicobacter pylori is the etiologic agent of human gastritis and peptic ulceration and produces urease as the major protein component on its surface. H. pylori urease is known to serve as a potent immunogen as well as major virulence factor. In order to express the recombinant urease in tobacco plants, a DNA fragment containing the minimal H. pylori urease gene cluster was subcloned into a plant expression vector. The recombinant vector was transformed to tobacco plants. The integration of the recombinant plasmids into tobacco chromosomal genome was verified by genomic PCR. Expression to mRNA was confirmed by Northern blot analysis, and expression to recombinant urease protein was observed by Western blot analysis. These results showed that the recombinant urease can be produced in tobacco plants and will be tested for immune response to use as an edible vaccine.

  • PDF

NFAT Transcription Factor Inhibitory Constituents from Cnidium officinale

  • Lee, Im-Seon;Huong, Dang Thi Lan;Lee, Mi-Sun;Kim, Jung-Woo;Na, Doe-Sun;Kim, Young-Ho
    • Natural Product Sciences
    • /
    • 제8권3호
    • /
    • pp.94-96
    • /
    • 2002
  • Four hundred varieties of plant extracts were screened for inhibitory activity against the NFAT transcription factor which plays an important role in inducing immune response. Among them, the MeOH extract of Cnidium officinale showed potent activity, and the activity-guided separation yielded butylidenephthalide, senkyunolide A and falcarindiol as the active constituents. The $IC_{50}$ value of butylidenephthalide was $1.3{\times}10^{-4}\;M$ and was similar to that of senkyunolide A $(2.1{\times}10^{-4}\;M)$. Interestingly, falcarindiol showed higher activity $(IC_{50},\;2.6{\times}10^{-5}\;M)$ than the two phthalides.

천연물로부터 항암면역증강물질 탐색연구 (Screening of Antineoplastic Immunomodulator from Herbal Medicines)

  • 송지영;양현옥;표석능;박신영;김기환;손은화;강남성;윤연숙
    • 약학회지
    • /
    • 제42권2호
    • /
    • pp.132-139
    • /
    • 1998
  • Currently, cancer is the primary cause of death and 50% of cancer patients are incurable by surgery, radiotherapy and chemotherapy. Therefore, immunotherpy is interested as the fourth remedy. Biological response modifier (BRM), such as organometallic compounds, glycoproteins, polysaccharides and other natural products. Is the one which can enhance the immune response against cancer cell. To develop new BRM from natural sources, we investigated 63 species Korean traditional medicines by observing the mitogenic activity to splenocytes, generation of activated killer cells and activation of macrophages. Finally, we selected 9 species including Angelicae gigantis Radix, Mori Cortex Radicis, Arisaematis Tuber, Salviae Radix, Cnidii Rhizoma, Ligusti Fructus, Pasoraliae Semen, Loranthi Ramulus, Ginseng Radix. Bioassay-guided fractionation and purification is undergoing.

  • PDF

Bovine Genome-wide Association Study for Genetic Elements to Resist the Infection of Foot-and-mouth Disease in the Field

  • Lee, Bo-Young;Lee, Kwang-Nyeong;Lee, Taeheon;Park, Jong-Hyeon;Kim, Su-Mi;Lee, Hyang-Sim;Chung, Dong-Su;Shim, Hang-Sub;Lee, Hak-Kyo;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권2호
    • /
    • pp.166-170
    • /
    • 2015
  • Foot-and-mouth disease (FMD) is a highly contagious disease affecting cloven-hoofed animals and causes severe economic loss and devastating effect on international trade of animal or animal products. Since FMD outbreaks have recently occurred in some Asian countries, it is important to understand the relationship between diverse immunogenomic structures of host animals and the immunity to foot-and-mouth disease virus (FMDV). We performed genome wide association study based on high-density bovine single nucleotide polymorphism (SNP) chip for identifying FMD resistant loci in Holstein cattle. Among 624532 SNP after quality control, we found that 11 SNPs on 3 chromosomes (chr17, 22, and 15) were significantly associated with the trait at the p.adjust <0.05 after PERMORY test. Most significantly associated SNPs were located on chromosome 17, around the genes Myosin XVIIIB and Seizure related 6 homolog (mouse)-like, which were associated with lung cancer. Based on the known function of the genes nearby the significant SNPs, the FMD resistant animals might have ability to improve their innate immune response to FMDV infection.

Infection and Immune Response in the Nematode Caenorhabditis elegans Elicited by the Phytopathogen Xanthomonas

  • Bai, Yanli;Zhi, Dejuan;Li, Chanhe;Liu, Dongling;Zhang, Juan;Tian, Jing;Wang, Xin;Ren, Hui;Li, Hongyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권9호
    • /
    • pp.1269-1279
    • /
    • 2014
  • Xanthomonas oryzae pv. oryzae (Xoo) strains are plant pathogenic bacteria that can cause serious blight of rice, and their virulence towards plant host is complex, making it difficult to be elucidated. Caenorhabditis elegans has been used as a powerful model organism to simplify the host and pathogen system. However, whether the C. elegans is feasible for studying plant pathogens such as Xoo has not been explored. In the present work, we report that Xoo strains PXO99 and JXOIII reduce the lifespan of worms not through acute toxicity, but in an infectious manner; pathogens proliferate and persist in the intestinal lumen to cause marked anterior intestine distension. In addition, Xoo triggers (i) the p38 MAPK signal pathway to upregulate its downstream C17H12.8 expression, and (ii) the DAF-2/DAF-16 pathway to upregulate its downstream gene expressions of mtl-1 and sod-3 under the condition of daf-2 mutation. Our findings suggest that C. elegans can be used as a model to evaluate the virulence of Xoo phytopathogens to host.