• Title/Summary/Keyword: plant growth-promoting agent

Search Result 60, Processing Time 0.021 seconds

Comparison of Antifungal Activity, Plant Growth Promoting Activity, and Mineral-Solubilizing Ability of Bacillus sp. Isolated from Rhizosphere Soil and Root (근권 토양과 뿌리로부터 분리된 Bacillus sp.의 항진균 활성, 식물 생장 촉진 활성 및 미네랄 가용화능 비교)

  • Kim, Hee Sook;Oh, Ka-Yoon;Lee, Song Min;Kim, Ji-Youn;Lee, Kwang Hui;Lee, Sang-Hyeon;Jang, Jeong Su
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.576-586
    • /
    • 2021
  • The purpose of this study was to evaluate the antifungal activity, plant-growth-promoting activity, and mineral solubilization ability of 10 species of phytopathogenic fungi to select a Bacillus sp. from rhizosphere soils and roots that can be used as a microbial agent. The antifungal activity for phytopathogenic fungi varied based on the Bacillus sp. Among the selected strains, DDP4, DDP16, DDP148, SN56, and SN95 exhibited antifungal activity for nine or more species of phytopathogenic fungi. Regarding nitrogen-fixation ability, all Bacillus sp. showed similar levels of activity, and siderophore production ability was relatively high in ANG42 and DDP427. The indole-3-acetic acid production abilities were in the range of 1.83-67.91 ㎍/ml, with variations in activity based on the Bacillus sp. One strain with a high activity was selected from each species, and their mineral solubilization abilities were examined. Most Bacillus sp. could solubilize phosphoric acid and calcium carbonate, and DDP148 and SN56 could solubilize silicon and zinc, respectively. These results suggested that Bacillus sp. can be considered potential multi-purpose microbial agents for plant growth promotion and disease prevention.

Isolation, Identification and Biological Control Activity of SKU-78 Strain against Ralstonia solanacearum (풋마름병균, Ralstonia solanacearum의 길항세균 SKU-78 균주의 분리 동정 및 특성)

  • Sung, Pil-Je;Shin, Jeong-Kun;Cho, Hong-Bum;Kim, Shin-Duk
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.48-52
    • /
    • 2005
  • Six stains of plant growth promoting rhizobacteria were selected through germinating seed assay and root colonization assay. Among them, SKU-78 strain induced significant suppression of bacterial wilt disease in tomato and pepper plants. Seed treatment followed by soil drench application with this strain resulted in over 60% reduction of bacterial wilt disease compared with the control. It was suggested that SKU-78 strain activated the host defense systems in plants, based on lack of direct antibiosis against pathogen. According to Bergey's Manual of Systemic Bacteriology and 16S rDNA sequence data, SKU-78 stain was identified as Bacillus sp. SKU-78.

Soil Microbial Community Analysis using Soil Enzyme Activities in Red Pepper Field Treated Microbial Agents (토양효소활성을 이용한 미생물제제 처리 고추경작지의 토양미생물군집 분석)

  • Kim, Yo-Hwan;Lim, Jong-Hui;An, Chang-Hwan;Jung, Byung-Kwon;Kim, Sang-Dal
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.1
    • /
    • pp.47-53
    • /
    • 2012
  • Increasing concerns over green farming technology, plant growth promoting rhizobacterium (PGRP) having growth promoting as well as plant disease suppressing properties was recently preferred to use for biological control of plant pathogens infecting plant. We measured the influence of the selected microbial consortium agents-a mixture of PGPR strains-, commercial bio-fungicide, and chemical pesticides on soil microbial community in red pepper field. The activities of soil enzyme such as dehydrogenase, urease, phosphatase, ${\beta}$-glucosidase, and cellulase were analyzed to investigate that of soil microbial community. We also measured plant length, main stem, stem diameter, number of branches and yields of red-pepper in order to observe the red pepper growth promotion. The results of measuring enzyme activities were dehydrogenase 3.5584 ${\mu}g$ TPF $g^{-1}h^{-1}$, urease 15.8689 ${\mu}g$ $NH_4{^-}N$ $g^{-1}h^{-1}$, phosphatase 0.5692 ${\mu}g$ PNP $g^{-1}h^{-1}$, ${\beta}$-glucosidase 2.4785 ${\mu}g$ PNP $g^{-1}h^{-1}$, and cellulase 86.1597 ${\mu}g$ glucose $g^{-1}h^{-1}$ in the soil treated with the microbial consortium agents, so it came out to be very active in the soil. Observing the growth of red-peppers, the main-stem length and the stem diameter were 6.1% and 8.1% higher in the soil treated with the selected microbial consortium agent than the chemical pesticides. After harvesting, yields were 7.3% higher in the soil treated with selected microbial consortium agents than the chemical pesticides. These results showed that microbial consortium agents contribute to increasing soil microbial diversity, growth promoting, and yield of red pepper.

Induced systemic resistance and plant growth promotion of a phosphate-solubilizing bacterium, Enterobactor intermedium 60-2G (인산가용미생물, Enterobacterium intermedium 60-2G의 식물 생장 촉진 및 전신저항성 유도)

  • Kim, Young-Cheol;Kim, Chul-Hong;Kim, Kil-Young;Cho, Baik-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.4
    • /
    • pp.223-231
    • /
    • 2002
  • A phosphate-solubilizing bacterium, Enterobacter intermedium 60-2G, was examined for plant growth-promotion and induction of systemic resistance using a model system of cucumber and scab disease, caused by Cladosporium cucumerinum. Compared with a nonbacterized control, treatment of cucumber with E. intermedium significantly reduced the severity of scab disease after challenge-inoculation with C. cucumerinum. Treatment of cucumber with E. intermedium also enhanced cucumber growth. The 60-2G strain showed a strong antimicrobial activity against several plant pathogenic fungi including Fusarium soysporum and Magnaporthe grisea. These results suggest the E. intermedium 60-2G is a promising candidate as a biological control agent displaying multiple beneficial properties to promote plant health.

Evaluation of Soil Streptomyces spp. for the Biological Control of Fusarium Wilt Disease and Growth Promotion in Tomato and Banana

  • Praphat, Kawicha;Jariya, Nitayaros;Prakob, Saman;Sirikanya, Thaporn;Thanwanit, Thanyasiriwat;Khanitta, Somtrakoon;Kusavadee, Sangdee;Aphidech, Sangdee
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.108-122
    • /
    • 2023
  • Fusarium oxysporum f. sp. lycopersici (Fol) and Fusarium oxysporum f. sp. cubense (Foc), are the causal agent of Fusarium wilt disease of tomato and banana, respectively, and cause significant yield losses worldwide. A cost-effective measure, such as biological control agents, was used as an alternative method to control these pathogens. Therefore, in this study, six isolates of the Streptomyces-like colony were isolated from soils and their antagonistic activity against phytopathogenic fungi and plant growth-promoting (PGP) activity were assessed. The results showed that these isolates could inhibit the mycelial growth of Fol and Foc. Among them, isolate STRM304 showed the highest percentage of mycelial growth reduction and broad-spectrum antagonistic activity against all tested fungi. In the pot experiment study, the culture filtrate of isolates STRM103 and STRM104 significantly decreased disease severity and symptoms in Fol inoculated plants. Similarly, the culture filtrate of the STRM304 isolate significantly reduced the severity of the disease and symptoms of the disease in Foc inoculated plants. The PGP activity test presents PGP activities, such as indole acetic acid production, phosphate solubilization, starch hydrolysis, lignin hydrolysis, and cellulase activity. Interestingly, the application of the culture filtrate from all isolates increased the percentage of tomato seed germination and stimulated the growth of tomato plants and banana seedlings, increasing the elongation of the shoot and the root and shoot and root weight compared to the control treatment. Therefore, the isolate STRM103 and STRM104, and STRM304 could be used as biocontrol and PGP agents for tomato and banana, respectively, in sustainable agriculture.

Genomics and LC-MS Reveal Diverse Active Secondary Metabolites in Bacillus amyloliquefaciens WS-8

  • Liu, Hongwei;Wang, Yana;Yang, Qingxia;Zhao, Wenya;Cui, Liting;Wang, Buqing;Zhang, Liping;Cheng, Huicai;Song, Shuishan;Zhang, Liping
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.417-426
    • /
    • 2020
  • Bacillus amyloliquefaciens is an important plant disease-preventing and growth-promoting microorganism. B. amyloliquefaciens WS-8 can stimulate plant growth and has strong antifungal properties. In this study, we sequenced the complete genome of B. amyloliquefaciens WS-8 by Pacific Biosciences RSII (PacBio) Single Molecule Real-Time (SMRT) sequencing. The genome consists of one chromosome (3,929,787 bp) and no additional plasmids. The main bacteriostatic substances were determined by genome, transcriptome, and mass spectrometry data. We thereby laid a theoretical foundation for the utilization of the strain. By genomic analysis, we identified 19 putative biosynthetic gene clusters for secondary metabolites, most of which are potentially involved in the biosynthesis of numerous bioactive metabolites, including difficidin, fengycin, and surfactin. Furthermore, a potential class II lanthipeptide biosynthetic gene cluster and genes that are involved in auxin biosynthesis were found. Through the analysis of transcriptome data, we found that the key bacteriostatic genes, as predicted in the genome, exhibited different levels of mRNA expression. Through metabolite isolation, purification, and exposure experiments, we found that a variety of metabolites of WS-8 exert an inhibitory effect on the necrotrophic fungus Botrytis cinerea, which causes gray mold; by mass spectrometry, we found that the main substances are mainly iturins and fengycins. Therefore, this strain has the potential to be utilized as an antifungal agent in agriculture.

Production of HCN, Weed Control Substance, by Pseudomonas koreensis and its Plant Growth-Promoting and Termiticidal Activities (Pseudomonas koreensis에 의한 잡초제어활성물질인 HCN 생성과 이 균주의 식물성장 촉진 및 흰개미 살충 활성)

  • Yoo, Ji-Yeon;Jang, Eun-Jin;Park, Soo-Yeun;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.27 no.9
    • /
    • pp.771-780
    • /
    • 2018
  • To develope a microbial weed control agent, HCN-producing bacteria were isolated, and their characteristics were investigated. A selected strain of WA15 was identified as Pseudomonas koreensis by morphological, cultural, biochemical and 16S rRNA gene analyses. The conditions for HCN production was investigated by a One-Variable-at-a-Time (OVT) method. The optimal HCN production conditions were tryptone 1%, glycine 0.06%, NaCl 1%, and an initial pH and temperature of 5.0 and $30^{\circ}C$, respectively. The major component for HCN production was glycine. Under optimal conditions, HCN production was about 3 times higher than that of the basal medium. The WA15 strain had physiological activities, such as indoleacetic acid that was associated with the elongation of plant roots and siderophore and ammonification inhibiting fungal growth, and produced hydrolytic enzymes, such as cellulase, pectinase and lipase. The strain was able to inhibit the growth of phytopathogenic fungi, such as Rhizoctonia solani, Botrytis cinerea and Fusarium oxysporum, by the synergistic action of volatile HCN and diffusible antimicrobial compounds. A microscopic observation of R. solani that was teated with the WA15 strain showed morphological abnormalities of fungal mycelia, which could explain the role of the antimicrobial metabolites that were produced by the WA15 strain. The volatile HCN produced by the WA15 strain was also found to have insecticidal activity against termites. Our results indicate that Pseudomonas koreensis WA15 can be applied as a microbial agent for weed control and also as a termite repellent. Furthermore, it could be applied as a microbial termiticidal agent to replace synthetic insecticides.

Keratinase Production by Recalcitrant Feather Degrading Pseudomonas Geniculata and Its Plant Growth Promoting Activity (난분해성 우모분해 Pseudomonas geniculata에 의한 케라틴 분해효소 생산 및 식물성장 촉진 활성)

  • Go, Tae-Hun;Lee, Sang-Mee;Lee, Na-Ri;Jeong, Seong-Yun;Hong, Chang-Oh;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.22 no.11
    • /
    • pp.1457-1464
    • /
    • 2013
  • We investigated the optimal conditions for keratinase production by feather-degrading Pseudomonas geniculata H10 using one variable at a time (OVT) method. The optimal medium composition and cultural condition for keratinase production were determined to be glucose 0.15% (w/v), beef extract 0.08% (w/v), $KH_2PO_4$ 0.12% (w/v), $K_2HPO_4$ 0.02% (w/v), NaCl 0.07% (w/v), $MgSO_4{\cdot}7H_2O$ 0.03%, $MgCl_2{\cdot}6H_2O$ 0.04% along with initial pH 10 at 200 rpm and $25^{\circ}C$, respectively. The production yield of keratinase was 31.6 U/ml in an optimal condition, showing 4.6-fold higher than that in basal medium. The strain H10 also showed plant growth promoting activities. This strain had ammonification activity and produced indoleacetic acid (IAA), siderophore and a variety of hydrolytic enzymes such as protease, lipase and chitinase. Therefore, this study showed that P. geniculata H10 could be not only used to upgrade the nutritional value of feather wastes but also useful in situ biodegradation of feather wastes. Moreover, it is also a potential candidate for the development of biofertilizing agent applicable to crop plant soil.

Suppression of Bacterial Wilt with Fuorescent Pseudomonads, TS3-7 strain (Fluorescent siderophore 생산균주, TS3-7에 의한 풋마름병 발병 억제)

  • Kim, Ji-Tae;Cho, Hong-Bum;Kim, Shin-Duk
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.296-300
    • /
    • 2005
  • Among the root colonizing and plant growth promoting bacteria isolated from the bacterial wilt suppressive soil, five strains were detected to produce siderophores by CAS agar assay. The most effective isolate, TS3-7 strain induced significant suppression of bacterial wilt disease in tomato and pepper plants. Seed treatment followed by soil drench application with this strain resulted in over 80% reduction of bacterial wilt disease compared with the control. Significant disease suppression by TS3-7 strain was related to the production of siderophore. Besides iron competition, induction of resistance of the host plant with siderophore was suggested to be another mode of action that suppress bacterial wilt, based on the lack of direct antibiosis against pathogen in vitro. According to Bergey's Manual of Systemic Bacteriology and 16S rDNA sequence data, TS3-7 stain was identified as Pseudomonas sp. TS3-7.

The Experimental Studies of YangHyulEum Gami-Bang Extracts on the Hair Growth Effect (양혈음가미방(養血飮加味方) 추출물의 발모효과에 대한 실험적 연구)

  • Hong, Jee-Hee;Jung, Hyun-A
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.29 no.3
    • /
    • pp.74-94
    • /
    • 2016
  • Objectives : YangHyulEum Gami-Bang(YHEG) is a hair care extracts which is composed of fourteen plant extracts used in oriental medicine. The purpose of this study is to investigate the effect of YangHyulEum Gami-Bang(YHEG) on the alopecia and hair growth.Methods & Results : The herbal extracts from YangHyulEum Gami-Bang(YHEG) was tested using in vivo and in vitro test models. 1. The YHEG extracts showed effect on the DNA proliferation of the hair dermal papilla cells measured by [3H]thymidine incorporation. 2. YHEG showed promoting on the expression of growth factors such as IGF-1, KGF-1 and inhibiting on the expression of inhibitory hair growth factor such as TGF-β1, BMP-2 estimated by qPCR. 3. The YHEG extracts showed effect on the activation of β-catenin in the dermal papilla cells. 4. YHEG showed inhibitory effects of NO synthesis at 0.2% concentrations. 5. YHEG showed effects in the expression of IL-1β, TNF-α, IL-6, COX-2 and iNOS gene in the LPS stimulated RAW 264.7 cells. 6. The hair growth index of the YHEG extracts ranked at over 2 when compared to control group which was ranked at 0. 7. The hair follicle number, length and size of the experimental group were remarkably higher than the control group in the histological observation.Conclusions : These results suggest that YangHyulEum Gami-Bang(YHEG) has hair growth promoting activity and it can be used as a potent treatment agent for preventing hair loss and stimulating hair growth for treatment of alopecia.