• 제목/요약/키워드: plant growth promoting potential

검색결과 108건 처리시간 0.026초

Isolation and Characterization of Plant Growth-Promoting Bacteria for the Phytoremediation of Diesel- and Heavy Metal-Contaminated Soil

  • Yun-Yeong Lee;Kyung-Suk Cho
    • 한국미생물·생명공학회지
    • /
    • 제51권4호
    • /
    • pp.484-499
    • /
    • 2023
  • Plant growth-promoting (PGP) bacteria can be used as bioresources to enhance phytoremediation through their PGP traits and pollutant removal capacity. In this study, 49 rhizobacteria were primarily isolated from the rhizosphere of tall fescue grown in diesel- and heavy metal-contaminated soil. Their biosurfactant production, phosphate (P) solubilization, and siderophore production were qualitatively and quantitatively evaluated to identify superior PGP bacteria. The optimal conditions for the growth of PGP bacteria and the stability of their PGP traits were a temperature of 35℃, a pH of 7, and 2 days of cultivation time. Four superior PGP bacteria (Pseudomonas sp. NL3, Bacillus sp. NL6, Bacillus sp. LBY14, and Priestia sp. TSY6) were finally selected. Pseudomonas sp. NL3 exhibited superior biosurfactant production and P solubilization. Bacillus sp. NL6 showed the highest P solubilization and superior production of biosurfactants and siderophores. Bacillus sp. LBY14 offered the best siderophore production and impressive P solubilization. Priestia sp. TSY6 had superior capacity for all three PGP traits. Through their secretion of beneficial PGP metabolites, the four bacteria isolated in this study have the potential for use in the phytoremediation of contaminated soil.

Application of Rhizobacteria for Plant Growth Promotion Effect and Biocontrol of Anthracnose Caused by Colletotrichum acutatum on Pepper

  • Lamsal, Kabir;Kim, Sang Woo;Kim, Yun Seok;Lee, Youn Su
    • Mycobiology
    • /
    • 제40권4호
    • /
    • pp.244-251
    • /
    • 2012
  • In vitro and greenhouse screening of seven rhizobacterial isolates, AB05, AB10, AB11, AB12, AB14, AB15 and AB17, was conducted to investigate the plant growth promoting activities and inhibition against anthracnose caused by Colletotrichum acutatum in pepper. According to identification based on 16S rDNA sequencing, the majority of the isolates are members of Bacillus and a single isolate belongs to the genus Paenibacillus. All seven bacterial isolates were capable of inhibiting C. acutatum to various degrees. The results primarily showed that antibiotic substances produced by the selected bacteria were effective and resulted in strong antifungal activity against the fungi. However, isolate AB15 was the most effective bacterial strain, with the potential to suppress more than 50% mycelial growth of C. acutatum in vitro. Moreover, antibiotics from Paenibacillus polymyxa (AB15) and volatile compounds from Bacillus subtilis (AB14) exerted efficient antagonistic activity against the pathogens in a dual culture assay. In vivo suppression activity of selected bacteria was also analyzed in a greenhouse with the reference to their prominent in vitro antagonism efficacy. Induced systemic resistance in pepper against C. acutatum was also observed under greenhouse conditions. Where, isolate AB15 was found to be the most effective bacterial strain at suppressing pepper anthracnose under greenhouse conditions. Moreover, four isolates, AB10, AB12, AB15, and AB17, were identified as the most effective growth promoting bacteria under greenhouse conditions, with AB17 inducing the greatest enhancement of pepper growth.

Effect of Azospirillum brasilense and Methylobacterium oryzae Inoculation on Growth of Red Pepper (Capsicum annuum L.)

  • Chung, Jong-Bae;Sa, Tong-Min
    • 한국토양비료학회지
    • /
    • 제45권1호
    • /
    • pp.59-65
    • /
    • 2012
  • Plant growth-promoting effects of rhizobacterial inoculation obtained in pot experiments cannot always be dependably reproduced in fields. In this study, we investigated the effect of inoculation with Azospirillum brasilense and Methylobacterium oryzae, which have displayed growth promoting effects in several pot experiments, on growth and fruit yield of red pepper under field condition in a plastic-film house. Four rows spaced 90 cm apart were prepared after application of compost ($10Mg\;ha^{-1}$), and red pepper seedlings (Capsicum annum L., Nocgwang) were transplanted in each row with 40-cm space. Experimental treatments were consisted of A. brasilense CW903 inoculation, M. oryzae CBMB20 inoculation, and uninoculated control. Twelve plots, 10 plants per plot, were allotted to the three treatments with four replicates in a completely randomized design. At the time of transplanting, 50 mL of each inoculum ($1{\times}10^8cells\;mL^{-1}$) was introduced into root zone soil of each plant, and re-inoculated at 7 and 14 days after transplant. Plant growth and fruit yield were measured during the experiment. Both A. brasilense CW903 and M. oryzae CBMB20 could not promote growth of red pepper plants. All growth parameters measured were not significantly different among treatments. There were large variations in fruit yield recorded on plot basis, and no statistically significant differences were found among treatments. The failure to demonstrate the expected plant growth promoting effect of the inoculants is possibly due to various environmental factors, including weather and soil characteristics, reducing the possibility to express the potential of the inoculated bacterial strains.

A Simple and Rapid Method for Functional Analysis of Plant Growth-promoting Rhizobacteria Using the Development of Cucumber Adventitious Root System

  • Bae, Yeoung-Seuk;Park, Kyung-Seok;Lee, Young-Gee;Choi, Ok-Hee
    • The Plant Pathology Journal
    • /
    • 제23권3호
    • /
    • pp.223-225
    • /
    • 2007
  • Many plant growth-promoting rhizobacteria (PGPRs) have been known for beneficial effects on plants including biological control of soilborne pathogens, induced systemic resistance to plant pathogens, phytohormone production, and improvement of nutrient and water uptake of plants. We developed a simple and rapid method for screening potential PGPR, especially phytohormone producing rhizobacteria, or for analyzing their functions in plant growth using cucumber seedling cuttings. Surface-sterilized cucumber seeds were grown in a plastic pot containing steamed vermiculite. After 7 days of cultivation, the upper part 2 cm in length of cucumber seedling, was cut and used as cucumber cuttings. The base of cutting stem was then dipped in a microcentrifuge tube containing 1.5ml of a bacterial suspension and incubated at $25^{\circ}C$ with a fluorescent light for 10 days. Number and length of developed adventitious roots from cucumber cuttings were examined. The seedling cuttings showed various responses to the isolates tested. Some isolates resulted in withering at the day of examination or in reduced number of roots developed. Several isolates stimulated initial development of adventitious roots showing more adventitious root hair number than that of untreated cuttings, while some isolate had more adventitious root hair number and longer adventitious roots than that of untreated control. Similar results were obtained from the trial with rose cuttings. Our results suggest that this bioassay method may provide a useful way for differentiating PGPR's functions involved in the development of root system.

인삼종자로부터 분리된 내생균의 동정과 식물생장 촉진 관련 활성의 평가 (Identification of Endophytic Bacteria in Panax ginseng Seeds and Their Potential for Plant Growth Promotion)

  • 엄유리;김보라;정진주;정찬문;이이
    • 한국약용작물학회지
    • /
    • 제22권4호
    • /
    • pp.306-312
    • /
    • 2014
  • Endophytes are microorganisms that live in the internal tissues of plants without harming the host plants. In this symbiotic relationship, the host plants provide nutrients and shelter to the endophytes, in turn, endophytes can promote the growth of host plants and act as a biological control agents against plant pathogens. Plant-microbe interactions like this are noted for natural methods for sustainable agriculture and environmental conservation. However, in spite of the infinite potential, there are only a few reports on the endophytes present in ginseng. In this study, we isolated and identified the endophytes from Panax ginseng seeds and evaluated the biological activities (IAA production ability, nitrogen fixation ability, phosphate solubilization capacity, siderophore production ability, and antifungal activities) of the endophyte isolates. Eight different endophytes were identified by 16S rRNA sequencing. Most of the endophytes have antibiotic and plant growth promoting (PGP) activities. Particularly, PgSEB5-37E have the highest antibiotic activity, both PgSEB5-37B and PgSEB5-37H have high PGP traits such as an abilities to produce IAA, solubilize phosphate and fix nitrogen. These results indicated that the endophytes from P. ginseng seeds may have applicable value to many industries. In order to use the isolated endophytes, quantitative analysis and field tests are needed to be performed.

Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees

  • Etminani, Faegheh;Harighi, Behrouz
    • The Plant Pathology Journal
    • /
    • 제34권3호
    • /
    • pp.208-217
    • /
    • 2018
  • In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees (Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas, Stenotrophomonas, Bacillus, Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea, Bacillus, Pseudomonas, Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity.

식물 생장 촉진 활성을 가진 인산분해 미생물 Pantoea 종의 분리 및 특성 규명 (Isolation and Characterization of Phosphate Solubilizing Bacteria Pantoea Species as a Plant Growth Promoting Rhizobacteria)

  • 윤창연;정용화
    • 생명과학회지
    • /
    • 제26권10호
    • /
    • pp.1163-1168
    • /
    • 2016
  • 식물생장촉진미생물(PGPR)은 농업생산성에 전세계적으로 매우 중요한 기작과 기능을 하는 것으로 알려져 있다. 이들 미생물들은 식물생장조절, 생물비료, 식물의 병 저항 및 방제 등 다양한 기작으로 식물생장을 촉진하면서 유용하게 이용되고 있다, 본 논문에서는 토양으로부터 네 종류의 서로 다른 Pantoea 종을 분리하여 식물생장 특성을 규명하고자 하였다. 16S rDNA 유전자의 분석에 의하면, 이들은 각각 Pantoea ananatis, Pantoea citrea, Pantoea dispersa, Pantoea vagans으로 확인되었고 각각 Pa1, Pc1, Pd1, Pv1으로 명명하였다. 분리된 모든 종들은 pH 5정도의 수치를 보이는 접종 1일차에 매우 높은 인산 분해 활성을 보였으며 배지의 pH 감소와 높은 상관성을 보였다. 또한 네 종류의 모든 Pa1, Pc1, Pd1, Pv1종은 각각 85.3±16.3 μg/ml, 183.9±16.8 μg/ml, 28.8±17.3 μg/ml, 114.1±16.5 μg/ml 농도의 매우 높은 인돌 아세트산 생성활성을 보였다. 지베렐린 생성의 경우 Pa1, Pc1와 Pd1는 각각 331.1±19.2 μg/ml, 288.5±16.8 μg/ml, 309.2±18.2 μg/ml 농도로 높은 활성을 보였지만, Pv1는 10.2±11.5 μg/ml 농도의 비교적 낮은 생성활성을 보였다. 또한 모든 분리 종들은 어린 상추식물의 경우 생체량의 32~37%, 상층부길이의 10~15% 생장을 촉진하는 활성을 보이므로 이들 분리된 미생물을 잠재적으로 식물생장촉진을 위한 미생물비료제재로 사용할 수 있다고 생각된다.

Bacillus mojavensis KJS-3를 이용한 식물의 생육촉진 활성연구 (Biological Control of Plant Growth Using the Plant Growth-Promoting Rhizobacterium Bacillus mojavensis KJS-3)

  • 표재성;사밀라 스레스타 아마티아;박송희;강재선
    • 생명과학회지
    • /
    • 제24권12호
    • /
    • pp.1308-1315
    • /
    • 2014
  • 식물성장촉진 뿌리박테리아(PGPR)을 사용한 생물학적 조절(Biological control)은 최근 몇년 동안에 주목 받게 되었다. PGPR은 산업적으로 중요한 감자, 토마토 그리고 쌀과 같은 경제적으로 중요한 작물의 성장촉진과 관련되어있다. 음식물 쓰레기에서 발견된 Bacillus mojavensis KJS-3은 Aspergillus terreus, A. fumagatus, A. flavus and Fusarium redolense에 대해 항진균작용을 가지고 있는 균주로, 이미 여러 산업적인 측면에서 유용한 가능성이 확인된 균주이다. 본 연구에서는 Bacillus mojavensis KJS-3를 알타리무와 상추에 $0.5{\times}10^9cfu/g$, $1.0{\times}10^9cfu/g$$2.0{\times}10^9cfu/g$의 3가지 농도로 분무, 재배한 후, 잎의 수, 길이, 무게, 뿌리와 근경의 길이, 넓이 및 무게를 비교함으로써, 이들에 대한 생육촉진작용을 확인해보았다. 그 결과, 처리하지 않은 군에 비하여 Bacillus mojavensis KJS-3를 처리한 군이 더 높은 생육성장을 보였으며, $1.0{\times}10^92cfu/g$농도에서의 재배는 저농도에서의 재배보다 더 높은 생육 성장을 그리고 고농도에서의 재배와 비슷한 생육성장을 나타내었다. 이러한 결과를 토대로 B. mojavensis KJS-3의 생물학적 비료로서의 가능성을 확인할 수 있었으며, 또한 B. mojavensis KJS-3의 다른 작물에 대한 생육조절제의 적용도 가능할 것으로 예상된다.

토마토 염류와 온도 스트레스에 대한 내성을 유도하는 미생물 선발 (Selection of Bacteria for Enhancement of Tolerance to Salinity and Temperature Stresses in Tomato Plants)

  • 유성제;신다정;원항연;송재경;상미경
    • 한국유기농업학회지
    • /
    • 제26권3호
    • /
    • pp.463-475
    • /
    • 2018
  • 국내 일부 시설재배지는 장기간 과도한 양분 투입 등에 의한 염류 집적 현상이 문제가 되어왔으며, 최근 이상기온에 따른 온도장해에 의한 피해도 발생하고 있다. 이러한 현상에 대해 친환경적으로 대처하기 위하여 고염류와 온도 스트레스에 대해 작물에 내성을 증강시키는 미생물을 선발하였다. 국내 토양에서 분리한 1,944균주중 고염류 또는 온도 스트레스 조건에서 세균의 생장과 식물생장촉진 관련 특성(IAA 생성, ACC deaminase 활성, 인산가용화능)을 고려하여 20균주를 1차 선발(전체 균주의 1.03%)하였다. 1차 선발한 20균주 중 토마토 식물검정을 통해 고염류 또는 온도스트레스에 대한 내성을 유도하는 7세균(1차 선발균주의 35%, 전체 균주의 0.36%)을 단계적으로 선발할 수 있었다. 선발된 세균은 16S rRNA 유전자의 염기서열 분석을 통해 모두 Bacillus 속에 속하는 것으로 확인되었다. 이러한 결과로 선발된 7균주는 토마토의 고염류 또는 온도 스트레스에 대한 효과적인 미생물 제제로 활용이 가능한 것을 확인할 수 있었다.

The Endophytic Bacteria Bacillus velezensis Lle-9, Isolated from Lilium leucanthum, Harbors Antifungal Activity and Plant Growth-Promoting Effects

  • Khan, Mohammad Sayyar;Gao, Junlian;Chen, Xuqing;Zhang, Mingfang;Yang, Fengping;Du, Yunpeng;Moe, The Su;Munir, Iqbal;Xue, Jing;Zhang, Xiuhai
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권5호
    • /
    • pp.668-680
    • /
    • 2020
  • Bacillus velezensis is an important plant growth-promoting rhizobacterium with immense potential in agriculture development. In the present study, Bacillus velezensis Lle-9 was isolated from the bulbs of Lilium leucanthum. The isolated strain showed antifungal activities against plant pathogens like Botryosphaeria dothidea, Fusarium oxysporum, Botrytis cinerea and Fusarium fujikuroi. The highest percentage of growth inhibition i.e., 68.56±2.35% was observed against Fusarium oxysporum followed by 63.12 ± 2.83%, 61.67 ± 3.39% and 55.82 ± 2.76% against Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi, respectively. The ethyl acetate fraction revealed a number of bioactive compounds and several were identified as antimicrobial agents such as diketopiperazines, cyclo-peptides, linear peptides, latrunculin A, 5α-hydroxy-6-ketocholesterol, (R)-S-lactoylglutathione, triamterene, rubiadin, moxifloxacin, 9-hydroxy-5Z,7E,11Z,14Z-eicosatetraenoic acid, D-erythro-C18-Sphingosine, citrinin, and 2-arachidonoyllysophosphatidylcholine. The presence of these antimicrobial compounds in the bacterial culture might have contributed to the antifungal activities of the isolated B. velezensis Lle-9. The strain showed plant growth-promoting traits such as production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, and nitrogen fixation and phosphate solubilization. IAA production was accelerated with application of exogenous tryptophan concentrations in the medium. Further, the lily plants upon inoculation with Lle-9 exhibited improved vegetative growth, more flowering shoots and longer roots than control plants under greenhouse condition. The isolated B. velezensis strain Lle-9 possessed broad-spectrum antifungal activities and multiple plant growth-promoting traits and thus may play an important role in promoting sustainable agriculture. This strain could be developed and applied in field experiments in order to promote plant growth and control disease pathogens.