Browse > Article
http://dx.doi.org/10.11625/KJOA.2018.26.3.463

Selection of Bacteria for Enhancement of Tolerance to Salinity and Temperature Stresses in Tomato Plants  

Yoo, Sung-Je (국립농업과학원 농업미생물과, 경상대학교 농업생명자원학과)
Shin, Da Jeong (국립농업과학원 농업미생물과)
Weon, Hang-Yeon (국립농업과학원 농업미생물과)
Song, Jaekyeong (국립농업과학원 농업미생물과)
Sang, Mee Kyung (국립농업과학원 농업미생물과)
Publication Information
Korean Journal of Organic Agriculture / v.26, no.3, 2018 , pp. 463-475 More about this Journal
Abstract
Salinity and extreme temperature stresses affect growth and productivity of crops negatively. Beneficial bacteria, including plant growth-promoting rhizobacteria (PGPR) induce growth promotion and tolerance of plants under abiotic stress conditions. In the present study, 20 strains were selected from 1944 isolated bacteria based on three plant growth-promoting (PGP) traits-aminocyclopropane-1-carboxylate deaminase activity, phosphate solubilization, indole-3-acetic acid production, and growth ability under salinity and extreme temperature stress conditions. Seven among the 20 strains were selected based on growth-promoting effects on plants under saline or temperature stresses in tomato plants. It was expected that the seven strains could induce tolerance of tomato plants under salinity or extreme temperature stresses, which implies that these seven strains can act as potential inducers of multiple stresses tolerance in tomato plants.
Keywords
abiotic stress; plant growth-promoting bacteria; tolerance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mishra, P. K., S. C. Bisht, P. Ruwari, G. Selvakumar, G. K. Joshi, and J. K. Bisht. 2011. Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonads from NW Himalayas. Arch. Microbiol. 193: 497-513.   DOI
2 Mittler, R. and E. Blumwald. 2010. Genetic Engineering for modern agriculture: challenges and perspectives. Annu. Rev. Plant Biol. 61: 443-462.   DOI
3 Nadeem, S. M., M. Ahmadb, Z. A. Zahir, A. Javaid, and M. Ashraf. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 32: 429-448.   DOI
4 O'Connell, P. F. 1992. Sustainable agriculture-a valid alternative. Outlook. Agric. 21: 5-12.   DOI
5 Patten, C. L. and B. R. Glick. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbial. 68: 3795-3801.   DOI
6 Penrose, D. M. and B. R. Glick. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plantarum. 118: 10-15.   DOI
7 Pikovskaya, R. I. 1948. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya. 17: 362-370.
8 Polonenko, D. R., C. I. Mayfield, and E. B. Dumbroff. 1981. Microbial responses to salt-induced osmotic stress. Plant Soil. 63: 415-426.   DOI
9 Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
10 Sarkar, A., P. K. Ghosh, K. Pramanik, S. Mitra, T. Soren, S. Pandey, M. H. Mondal, and T. K. Maiti. 2018. A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res. Microbiol. 169: 20-32.   DOI
11 Bano, A. and M. Fatima. 2009. Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biol. Fertil. Soils. 45: 405-413.   DOI
12 Spaepen, S., J. Vanderleyden, and R. Remans. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31: 425-448.   DOI
13 Ali, S. Z., V. Sandhya, M. Grover, N. Kishore, L. Venkateswar Rao, and B. Venkateswarlu. 2009. Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol. Fertil. Soils. 46: 45-55.   DOI
14 Ashraf, M. and P. J. C. Harris. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166: 3-16.   DOI
15 Athar, H. R. and M. Ashraf. 2009. Strategies for crop improvement against salinity and drought stress: An overview. In: Athar, H. R., Ozturk, M, (eds) Salinity and water stress: improving crop efficiency. pp. 1-16. Springer, New York, U.S.A.
16 Bal, H. B., L. Nayak, S. Das, and T. K. Adhya. 2013. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil. 366: 93-105.   DOI
17 Tiwari, S., V. Prasad, P. S. Chauhan, and C. Lata. 2017. Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant responses to phytohormones through osmoprotection and gene expression regulation in rice. Front. Plant Sci. 8: 1510.   DOI
18 Sreenivasulu, N., S. K. Sopory, and P. B. Kavi-Kishor. 2007. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene. 388: 1-13.   DOI
19 Swamy, P. M. and B. Smith. 1999. Role of abscisic acid in plant stress tolerance. Cur. Sci. 76: 1220-1227.
20 Theocharis, A., S. Bordiec, O. Fernandez, S. Paquis, S. Dhondt-Cordelier, F. Baillieul, C. Clement, and E. A. Barka. 2012. Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. Mol. Plant-Microbe. Interact. 25: 241-249.   DOI
21 Tuteja N. 2007. Abscisic acid and abiotic stress signaling. Plant Signal. Behav. 2: 135-138.   DOI
22 Vardharajula, S, S. Z. Ali, M. Grover, G. Reddy, and V. Bandi. 2011. Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J. Plant Interact. 6: 1-14.   DOI
23 Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal amplification for phylogenetic study. J. Bacteriol. 173: 697-703.   DOI
24 Yang, J., J. W. Kloepper, and C. M. Ryu. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends. Plant Sci. 14: 1-4.   DOI
25 El-Daim, I. A. A., S. Bejai, and J. Meijer. 2014. Improved heat stress tolerance of wheat seedlings by bacterial seed treatment. Plant Soil. 379: 337-350.   DOI
26 Barka, E. A. and J. C. Audran. 1997. Response of champenoise grapevine to low temperatures: Changes of shoot and bud proline concentrations in response to low temperatures and correlations with freezing tolerance. J. Hortic. Sci. Biotechnol. 72: 577-582.   DOI
27 Bhardwaj, D., M. W. Ansari, R. K. Sahoo, and N. Tuteja. 2014. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb. Cell. Fact. 13, 66.   DOI
28 Bhatnagar-Mathur, P., V. Vadez, and K. K. Sharma. 2008. Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep. 27: 411-424.   DOI
29 Bric, J. M., R. M. Bostock, and S. E. Silverstone. 1991. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl. Environ. Microbiol. 57: 535-538.
30 Dimkpa, C, T. Weinand, and F. Asch. 2009. Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 32: 1682-1694.   DOI
31 Glick, B. R. 2006. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS. Microbiol. Lett. 251: 1-7.
32 Glick, B. R. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 169: 30-39.   DOI
33 Husen, E. 2003. Screening of soil bacteria for plant growth promotion activities in vitro. Indian J. Agric. Sci. 4: 27-31.
34 Glick, B. R., Z. Cheng, J. Czarny, and J. Duan. 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur. J. Plant Pathol. 119: 329-339.   DOI
35 Grover, M., S. Z. Ali, V. Sandhya, A. Rasul, and B. Venkateswarlu. 2011. Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J. Microbiol. Biotechnol. 27: 1231-1240.   DOI
36 Hameeda, B., G. Harini, O. P. Rupela, S. P. Wani, and G. Reddy. 2008. Growth promotion of maize by phosphate solubilizing bacteria isolated from composts and macrofauna. Microbiol. Res. 163: 234-242.   DOI
37 Kloepper, J. W., C. M. Ryu, and S. Zhang. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259-1266.   DOI
38 Kang, S.-M., A. L. Khan, M. Waqas, Y.-H. You, J.-H. Kim, J.-G. Kim, M. Hamayun, and I.-J. Lee. 2014. Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J. Plant Interact. 9: 673-682.   DOI
39 Khan, A. L., M. Hamayun, M. Waqas, S.-M. Kang, Y.-H. Kim, D.-H. Kim, I.-J. Lee. 2012. Exophiala sp. LHL08 association gives heat stress tolerance by avoiding oxidative damage to cucumber plants. Biol. Fertil. Soils. 48: 519-529.   DOI
40 Khandelwal, A. and S. S. Sindhu. 2013. ACC Deaminase containing rhizobacteria enhance nodulation and plant growth in Clusterbean (Cyamopsis tetragonoloba L.). J. Microbiol. Res. 3: 117-123.
41 Meena, R. K., R. K. Singh, N. P. Singh, S. K. Meena, and V. S. Meena. 2015. Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal. Agric. Biotechnol. 4: 806-811.
42 Kumar, D. 2005. Breeding for drought resistance. In: Ashraf M, Harris PJC (eds) Abiotic stress: Plant resistance through breeding and molecular approaches. pp. 145-147, Haworth Press, New York. U.S.A.
43 Kumar, A, A. Kumar, S. Devi, S. Patil, C. Payal, and S. Negi. 2012. Isolation, screening and characterization of bacteria from rhizospheric soils for different plant growth promotion (PGP) activities: an in vitro study. Recent Res. Sci. Technol. 4: 1-5.
44 Liang, Z. S., Z. R. Ding, and S. T. R. Wang. 1992. Study on type of water stress adaptation in both Brassica napus and B. juncea L. species. Acta. Botanika. 12: 38-45.