Browse > Article
http://dx.doi.org/10.5352/JLS.2014.24.12.1308

Biological Control of Plant Growth Using the Plant Growth-Promoting Rhizobacterium Bacillus mojavensis KJS-3  

Pyo, Jae Sung (College of Pharmacy, Kyungsung University)
Shrestha, Sarmila Amatya (College of Pharmacy, Kyungsung University)
Park, Song Hee (College of Pharmacy, Kyungsung University)
Kang, Jae Seon (College of Pharmacy, Kyungsung University)
Publication Information
Journal of Life Science / v.24, no.12, 2014 , pp. 1308-1315 More about this Journal
Abstract
Biological control using the plant growth-promoting Rhizobacterium (PGPR) has received significant attention in recent years. PGPR has been linked with promoting growth in economically important crops, such as potatoes, tomatoes, and rice. Bacillus mojavensis KJS-3 (Moja-3), isolated from food waste, possesses antifungal properties against Aspergillus terreus, A. fumagatus, A. flavus, and Fusarium redolense, and it may have potential in the development of products for industrial applications. The main purpose of this study was to determine the effects of spraying the PGPR Bacillus mojavensis KJS-3 on the growth of altari radish (leaf number, leaf length, leaf weight, root length, and rhizome length, adjacent portion diameter, and weight) and lettuce (leaf number, length, width, and weight). Three different concentrations of the foliar spray treatment of B. mojavensis KJS-3 were applied to the altari radish and lettuce: the recommended standard concentration of $1{\times}10^9cfu/g$, half the standard concentration of $0.5{\times}10^9cfu/g$, and double the standard concentration of $2{\times}10^9cfu/g$). The B. mojavensis strain foliar spray treatment increased the growth of the leaves and roots of the altari radish and increased the growth of the lettuce leaves. For both plants, the recommended concentration of B. mojavensis KJS-3 produced better growth than half the standard concentration, and the growth was similar with the double dose. This study demonstrates positive effects of Moja-3, suggesting it may be a potential new bio-fertilizer for improving the growth of altari radish and lettuce.
Keywords
Altari radish; biological control; lettuce; mojavensis; PGPR (Plant Growth Promoting Rhizobacterium);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Aslantas, R., Cakmakci, R. and Sahin, F. 2007. Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Sci Hortic 111, 371-377.   DOI   ScienceOn
2 Bacon, C. W., Hinton, D. M., Mitchell, T. R., Snook, M. E. and Olubajo, B. 2012. Characterization of endophytic strains of Bacillus mojavensis and their production of surfactin isomers. J Biocontrol 62, 1-9.
3 Cakmakci, R., Kantar, F. and Sahin, F. 2001. Effect of N2-fixing bacterial inoculations on yield of sugar beet and barley. J Plant Nutr Soil Sci 164, 527.   DOI
4 Conn, K. L., Nowak, J. and Lazarovits, G. 1997. A gnotobiotic bioassay for studying interactions between potatoes and plant growth-promoting rhizobacteria. Can J Microbiol 43, 801-808.   DOI
5 Dobereiner, J. 1997. Biological nitrogen fixation in the tropics: social and economic contributions. Soil Biol Biochem 29, 771-774.   DOI
6 Dursun, A., Ekinci, M. and Donmez, M. F. 2008. Effects of inoculation bacteria on chemical content, yield and growth in Rocket (Eruca vesicaria subsp. sativa). Asian J Chemistry 20, 3197-3202.
7 Dursun, A., Ekinci, M. and Donmez, M. F. 2010. Effects of foliar application of plant growth promoting bacterium on chemical contents, yield and growth of tomato (Lycopersicon esculentum) and cucumber (Cucumis sativus). Pak J Bot 42, 3349-3356.
8 Esitken, A., Pirlak, L., Turan, M. and Sahin, F. 2006. Effects of oral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci Hortic 110, 324-327.   DOI   ScienceOn
9 Frommel, M. I., Nowak, J. and Lazarovits, G. 1991. Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum ssp. tuberosum) as affected by a non-fluorescent Pseudomonas sp. Plant Physiol 96, 926-938.
10 Germida, J. J., Siciliano, S. D., de Freitas, R. and Seib, A. M. 1998. Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol Ecol 26, 43-50.   DOI   ScienceOn
11 Hinton, D. M. and Bacon, C. W. 1995. Enterobacter cloacae is an endophytic symbiont of corn. Mycopathologia 129, 117-125.   DOI   ScienceOn
12 Hollis, J. P. 1951. Bacteria in healthy potato tissue. Phytopathology 41, 350-366.
13 Kloepper, J. W., Zablotowicz, R. M., Tipping, E. M. and Lifshitz, R. 1991. Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister, D. L., Cregow, P. B. (eds.), The Rhizosphere and Plant Growth. Kluwer Academic Publishers, Dordrecht 14, 315-326.
14 Jacobs, M. J., Bugbee, W. M. and Gabrielson, D. A. 1985. Enumeration, location, and characterization of endophytic bacteria within sugar beet roots. Can J Bot 63, 1262-1265.   DOI
15 Kim, D. H., Kim, H. K., Kim, K. M., Kim, C. K., Jeong, M. H., Ko, C. Y., Moon, K. H. and Kang, J. S. 2011. Antibacterial activities of macrolactin a and 7-O-succinyl macrolactin a from Bacillus polyfermenticus KJS-2 against vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. Arch Pharm Res 34, 147-152.   과학기술학회마을   DOI
16 Samish, Z., Etinger-Tulczynska, R. and Bick, M. 1961. Microflora within healthy tomatoes. Appl Microbiol 9, 20-25.
17 Reis, V. M., Olivares, F. L. and Dobereiner, J. 1994. Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J Microbiol Biotechnol 10, 401-405.   DOI
18 Sahin, F., Kotan, R., Demirci, E. and Miller, S. A. 2000. Domates ve biber bakteriyel leke hastaligiile biyolojik savasta actigard ve bazi antagonistlerin etkinligi. Ataturk Universitesi Ziraat Fakultesi Dergisi 31, 11-16.
19 Salantur, A., Ozturk, A., Akten, S., Sahin, F. and Donmez, F. 2005. Effect of inoculation with nonindigenous and indigenous rhizobacteria of Erzurum (Turkey) origin on growth and yield of spring barley. Plant Soil 275, 147-156.   DOI
20 Snook, M. E., Mitchell, T., Hinton, D. M. and Bacon, C. W. 2009. Isolation and characterization of Leu7-surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides. Agric Food Chem 57, 4287-4292.   DOI   ScienceOn
21 Stajkovic, O., Delic, D., Josic, D., Kuzmanovic, D., Rasulic, N. and Knezevic-Vukcevic, J. 2011. Improvement of common bean growth by co-inoculation with Rhizobium and plant growth-promoting bacteria. Roman Biotechnol Lett 16, 5919-5926.
22 Sturz, A. V., Christie, B. R. and Matheson, B. G. 1998. Associations of bacterial endophyte populations from red clover and potato crops with potential for beneficial allelopathy. Can J Microbiol 44, 162-167.   DOI
23 Misaghi, I. J. and Donndelinger, C. R. 1990. Endophytic bacteria in symptom-free cotton plants. Phytopathology 80, 808-811.   DOI
24 Kim, K. M., Choi, S. M., Kim, D. U., Yoon, S. J., Lee, D. K. and Kang, J. S. 2009. Acute oral toxicity and identification of antimicrobial and antifungal effects of Bacillus mojavensis KJS-3 as novel strain isolated from food wastes. Mol Cell Toxicol 5, 54.
25 Kotan, R., Sahin, F., Demirci, E., Ozbek, A., Eken, C. and Miller, S.A. 1999. Evaluation of antagonistic bacteria for biological control of Fusarium dry rot of potato. Phytopathology 89, 41.
26 Lodewyckx, C., Vangronsveld, J., Porteous, F., Moore, E. R. B., Taghavi, S., Mezgeay, M. and van der Lelie, D. 2002. Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21, 583-606.   DOI   ScienceOn
27 Roberts, M. S., Nakamura, L. K. and Cohan, F. M. 1994. Bacillus mojavensis sp. nov., distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence, and differences in fatty acid composition. Int J Syst Bacteriol 44, 256-264.   DOI   ScienceOn
28 Nowak, J., Asiedu, S. K., Bensalim, S., Richards, J., Stewart, A., Smith, C., Stevens, D. and Sturz, A. V. 1998. From laboratory to applications: challenges and progress with in vitro dual cultures of potato and beneficial bacteria. Plant Cell Tissue Organ Culture 52, 97-103.   DOI
29 Orhan, E., Esitken, A., Ercisli, S., Turan, M. and Sahin, F. 2006. Effects of Plant Growth Promoting Rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci Hortic 111, 38-43.   DOI   ScienceOn
30 Vance, C. P. 1997. The molecular biology of nitrogen metabolism, pp. 449-476. In: Dennis, D. T., Turpin, D. H., Lefebvre, D. D. and Layzell, D. B. (eds.), Plant Metabolism. Longman Scientific, Essex, UK.
31 Mundt, J. O. and Hinkle, N. F. 1976. Bacteria within ovules and seeds. Appl Environ Microbiol 32, 694-698.
32 Bacon, C. W., Yates, I. E., Hinton, D. M. and Meredlth, F. 2001. Biological control of Fusarium moniliforme in maize. Environ Health Perspect 109(Suppl 2), 325-332.   DOI
33 Altindag, M., Sahin, M., Esitken, A., Ercisli, S., Guleryuz, M., Donmez, M. F. and Sahin, F. 2006. Biological control of brown root (Moniliana laxa) on apricot (Prunus armeniaca L.) by Bacillus, Burkholdria and Pseudomonas application under in vitro and in vivo conditions. Bio Control 38, 369-372.   DOI   ScienceOn
34 Esitken, A., Karlidag, H., Ercisli, S., Turan, M. and Sahin, F. 2003. The effect of spraying a growth promoting bacterium on the yield, growth and nutrient element composition of leaves of apricot (Prunus armeniaca L. cv. Hacihaliloglu). Aust J Agric Res 54, 377-380.   DOI