• Title/Summary/Keyword: plant growth promoting

Search Result 496, Processing Time 0.022 seconds

Degradation effect of carbendazim in soil by application with the microbial agent, Rhodococcus sp. 3-2 (미생물제(Rhodococcus sp. 3-2) 처리에 따른 토양 중 카벤다짐의 분해효과)

  • Yeon, Jehyeong;Kim, Hyeon-su;Ahn, Jae-Hyung;Han, Gui Hwan;Oh, Young Goun;Cho, Il Kyu;Park, In-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.322-329
    • /
    • 2021
  • BACKGROUND: The fungicide of benomyl, a benzimidazole group, has been commonly used for pesticides against fungal diseases in the world. However, benomyl is rapidly hydrolyzed in the environment after using to control plant diseases and has adverse effects by generating carbendazim, which is toxic to plants, humans, and the environment. METHODS AND RESULTS: In this study, the decomposition effect of carbendazim, a degradation product of benomyl was conducted in pot and field after making a prototype of benomyl-degrading microbial agent (BDMA). We found that the carbendazim-degrading microbial agent (CDMA) (105, 106, and 107 cfu/g soil) decomposed carbendazim by 50% or more in all the treatments, compared to the untreated control in the pot tests after four weeks. The effect of 100% decomposition of carbendazim was observed at 7 days after treatment, when the prototype of BDMA was apllied at 10-folds dilution in the field. The decomposition effect at more than 60% and plant growth promoting effect were observed after 7 days of the treatment, compared with the untreated group in the second field experiment,treated with commercially available concentrations of 500-folds and 1,000-folds. CONCLUSION(S): These results might represent that the BDMA would decompose carbendazim effectively, a decomposition product of the fungicide benomyl, remaining in agricultural area, and it could be utilized practically by using a low dilution rate.

Studies on the Growth and Nutrient Uptaking of Flag Leaf and Chaff of Rice Plant in Cold Injury Location II, Influence of Different Nitrogen and Silicate Application on the Nutrient Uptaking of Chaff in Rice Plant (냉해지대의 수도생육과 임, 불임인각의 양분흡수에 관한 연구 제3보 질소와 규산시용량의 차이가 인각의 양분흡수에 미치는 영향)

  • Kim, Y.J.;Choi, S.I.;Ra, J.S.;Lee, J.H.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.1
    • /
    • pp.81-88
    • /
    • 1983
  • This experiment was conducted to study about influenced inorganic element contents of flag leaf and chaff with different nitrogen and silicate application in Jinan (sea level 303m). The recommended rate of fertilizer application above N 15kg/10a was poor for dry production increment in cold in July elevation and was demanded increment of silicate. In the elevation of cold in July high rates of nitrogen application produced more incomplete grain and a reduced cold tolerance. These effects were due to over-content of soluble nitrogen within flag leaf and disturbance of uptaking potassium and silicate. On the other hand, the application of silicate could increase yield by promoting resistance to cold- damage. The application of increasing level of nitrogen resulted in increasing the contents of total nitrogen and phosphate in both sterile and fertile glumes. The contents of potassium and calcium were the highest at the level of nitrogen 10 - 15kg/10a, but magnessium was rather high at low nitrogen levels. It is interesting that at any level of nitrogen, over 6% higher silicate contents were noted in the fertile chaff than in the sterile chaff. Application of increasing level of silicate fertilizer decreased total nitrogen contents, but increased the contents of phosphate, potassium. and silicate in the chaff. Increasing rate of silicate content by increasing silicate addition was remarkably higher in the fertile chaff than in the sterile chaff.

  • PDF

Growth and Flowering Responses of Carnation (Dianthus caryophyllus) as influenced by Hydroponic Systems and Nutrient Solutions (재배방식과 양액의 종류에 따른 카네이션(Dianthus caryophyllus)의 생장과 개화반응)

  • 정순주;이범선;강종구;서범석
    • Journal of Bio-Environment Control
    • /
    • v.6 no.3
    • /
    • pp.190-197
    • /
    • 1997
  • This study was conducted to determine the optimum hydroponic system and nutrient solution for promoting the growth and flowering of hydroponically grown carnation. DFT (deep flow technique) and NFT (nutrient film technique) systems were employed and four kinds of nutrient solution, which are Cooper solution, Yamasaki solution, balanced nutrient solution by Japanese Horticultural Experiment Station and PTG solution in the Netherlands were used and compared. pH was lowest in the PTG solution compared to the other nutrient solutions used. Plant height was highest in the DFT system in the plot of PTG solution as of 53.0 cm at 88 days after transplanting, while lowest in NFT system with Cooper solution. Stem diameter was more thickened in NFT system with PTG solution as of 7.2 mm at 88 days after transplanting. Days to flowering was shortened to 122.3 days in NFT system when PTG solution was used. This results suggested a combination of NFT system with PTG solution as optimum hydroponic system and nutrient solution for cut carnation production. Further trials as to the management of nutrient solution by glowing stages should be followed.

  • PDF

Effects of Schizandra chinensis Extract on the Growth of Intestinal Bacteria Related with Obesity (오미자 추출물이 비만과 관련된 장내 세균의 생육에 미치는 영향)

  • Jeong, Eun-Ji;Lee, Woon-Jong;Kim, Kwang-Yup
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.673-680
    • /
    • 2009
  • This study was conducted to screen for plant food materials that improve human intestinal microflora, especially microorganisms associated with obesity. Among 30 tested plant food materials, the extract of Schizandra chinensis inactivated Eubacterium limosum, Bacteroides fragilis and Clostridium spp. Additionally, S. chinensis extract was also found to have a growth-promoting effect on Bifidobacterium spp.. The antimicrobial activity and antioxidant activity of the water extract did not decrease in respond to heating. Additionally, the water extract of S. chinensis did not show a toxic effect on the growth of Caco-2 cells. In vivo feeding tests were performed to investigate the influence of extract on the intestinal microflora in rats. Although the extract did not reduce obesity induced by a high fat diet, it led to significant increase in the population of Bifidobacterium spp. and a decrease in the population of Clostridium spp. in rats. Taken together, these results indicate that S. chinensis could be useful as a functional food component to control intestinal microbial flora.

Improving Corsican pine somatic embryo maturation: comparison of somatic and zygotic embryo morphology and germination

  • Wtpsk, Senarath;Shaw, D.S.;Lee, Kui-Jae;Lee, Wang-Hyu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.04a
    • /
    • pp.61-62
    • /
    • 2003
  • Clonal propagation of high-value forest trees through somatic embryogenesis (SE) has the potential to rapidly capture the benefits of breeding or genetic engineering programs and to improve raw material uniformity and quality. A major barrier to the commercialization of this technology is the low quality of the resulting embryos. Several factors limit commercialization of SE for Corsican pine, including low initiation rates, low culture survival, culture decline causing low or no embryo production, and inability of somatic embryos to fully mature, resulting in low germination and reduced vigour of somatic seedlings. The objective was to develop a Corsican pine maturation medium that would produce cotyledonary embryos capable of germination. Treatments were arranged in a completely randomized design. Data were analyzed by analysis of variance, and significant differences between treatments determined by multiple range test at P=0.05. Corsican pine (Pinus nigra var. maritima) cultures were initiated on modified !P6 medium. Modifications of the same media were used for culture multiplication and maintenance. Embryogenic cultures were maintained on the same medium semi solidified with 2.5 g/l Gelrite. A maturation medium, capable of promoting the development of Corsican pine somatic embryos that can germinate, is a combination of iP6 modified salts, 2% maltose, 13% polyethylene glycol (PEG), 5 mg!l abscisic acid (ABA), and 2.5 g/l Gelrite. After initiation and once enough tissue developed they were grown in liquid medium. Embryogenic cell suspensions were established by adding 0.951.05 g of 10- to 14-day-old semisolid-grown embryogenic tissue to 9 ml of liquid maintenance media in a 250ml Erlenmeyer flask. Cultures were then incubated in the dark at 2022$^{\circ}$C and rotated at 120 rpm. After 2.53 months on maturation medium, somatic embryos were selected that exhibited normal embryo shape. Ten embryos were placed horizontally on 20 ml of either germination medium ($\frac{2}{1}$strength Murashige and Skoog (1962) salts with 2.5 g/l activated charcoal) or same medium with copper sulphate adjusted to 0.25 mg/1 to compensate for copper adsorption by activated carbon. 2% and 4% maltose was substituted by 7.5% and 13% PEG respectively to improve the yield of the embryos. Substitution of' maltose with PEG was clearly beneficial to embryo development. When 2% of the maltose was replaced with 7.5% PEG, many embryos developed to large bullet-shaped embryos. At latter stages of development most embryos callused and stopped development. A few short, barrel-shaped cotyledonary embryos formed that were covered by callus on the sides and base. When 4% of the maltose was removed and substituted with 13% PEG, the embryos developed further, emerging from the callus and increasing yield slightly. Microscopic examination of the cultures showed differing morphologies, varying from mostly single cells or clumps to well-formed somatic embryos that resembled early zygotic embryos only liquid cultures with organized early-stag. A procedure for converting and acclimating germinants to growth in soil and greenhouse conditions is also tested. Seedling conversion and growth were highly related to the quality of the germinant at the time of planting. Germinants with larger shoots, longer, straighter hypocotyls and longer roots performed best. When mature zygotic embryos germinate the root emerges, before or coincident with the shoot. In contrast, somatic embryos germinate in reverse sequence, with the cotyledons greening first, then shoot emergence and then, much later, if at all, the appearance of the root. Somatic seedlings, produced from the maturation medium, showed 100% survival when planted in a field setting. Somatic seedlings showed normal yearly growth relative to standard seedlings from natural seed.

  • PDF

Growth of Intestinal Bacteria and Intestinal Inflammation of Sprout Extract from Common Buckwheat and Tartary Buckwheat (일반메밀과 쓴메밀의 새싹 추출물의 장내 유익균 증식 및 염증조절 효능 평가)

  • Su Jeong Kim;Hwang Bae Sohn;Jong Won Kim;Sanghyun Lim;Jong Nam Lee;Su Hyoung Park;Jung Hwan Nam;Do Yeon Kim;Ye Jin Lee;Dong Chil Chang;Yul Ho Kim
    • Korean Journal of Plant Resources
    • /
    • v.36 no.5
    • /
    • pp.455-468
    • /
    • 2023
  • We aimed to assess the potential growth-promoting effects of buckwheat sprout on intestinal bacteria and their anti-inflammation effects in a cellular model of intestinal inflammation. The growth of Bifidobacterium longum ssp. infantis BT1 was enhanced with the addition of the sprout extract of tartary buckwheat. Further, in the inflammatory model cells cultured with Raw 264.7 cells were treated with buckwheat sprout including each 10 probiotics before the addition of lipopolysaccharide (LPS) to induce inflammation in Raw 264.7 cells. Buckwheat sprout in both Bifidobacterium longum ssp. infantis BT1 and Lacticaseibacillus paracasei LPC5 significantly reduced the production of NO and PGE2. The above results indicate that buckwheat sprout extract which contains with various physiologically active substances such as rutin, quercetin, and choline is effective in suppressing NO and PGE2 production, which are inflammation-related indicators. The present study suggests that buckwheat sprout could induce positive effects on the intestinal beneficial bacteria and in anti-inflammation.

Root Colonization by Beneficial Pseudomonas spp. and Bioassay of Suppression of Fusarium Wilt of Radish (유용 Pseudomonas 종의 근면점유와 무우 Fusarium시들음병의 억제에 관한 생물학적 정량)

  • Lee, Min-Woong
    • The Korean Journal of Mycology
    • /
    • v.25 no.1 s.80
    • /
    • pp.10-19
    • /
    • 1997
  • Fusarium wilt of radish (Raphanus sativus L.) is caused by the Fusarium oxysporum f. sp. raphani (FOR) which mainly attacks Raphanus spp. The pathogen is a soil-borne and forms chlamydospores in infected plant residues in soil. Infected pathogen colonizes the vascular tissue, leading to necrosis of the vascular tissue. Growth promoting beneficial organisms such as Pseudomonas fluorescens WCS374 (strain WCS374), P. putida RE10 (strain RE10) and Pseudomonas sp. EN415 (strain EN415) were used for microorganisms-mediated induction of systemic resistance in radish against Fusarium wilt. In this bioassy, the pathogens and bacteria were treated into soil separately or concurrently, and mixed the bacteria with the different level of combination. Significant suppression of the disease by bacterial treatments was generally observed in pot bioassy. The disease incidence of the control recorded 46.5% in the internal observation and 21.1% in the external observation, respectively. The disease incidence of P. putida RE10 recorded 12.2% in the internal observation and 7.8% in the external observation, respectively. However, the disease incidence of P. fluorescens WCS374 which was proved to be highly suppressive to Fusarium wilt indicated 45.6% in the internal observation and 27.8% in the external observation, respectively. The disease incidence of P. putida RE10 mixed with P. fluorescens WCS374 or Pseudomonas sp. EN415 was in the range of 10.0-22.1%. On the other hand, the disease incidence of P. putida RE10 mixed with Pseudomonas sp. EN415 was in the range of 7.8-20.2%. The colonization by FOR was observed in the range of $2.4-5.1{\times}10^3/g$ on the root surface and $0.7-1.3{\times}10^3/g$ in the soil, but the numbers were not statistically different. As compared with $3.8{\times}10^3/g$ root of the control, the colonization of infested ROR indicated $2.9{\times}10^3/g$ root in separate treatments of P. putida RE10, and less than $3.8{\times}10^3/g$ root of the control. Also, the colonization of FOR recorded $5.1{\times}10^3/g$ root in mixed treatments of 3 bacterial strains such as P. putida RE10, P. fluorescens WCS374 and Pseudomonas sp. EN415. The colonization of FOR in soil was less than that of FOR in root part. Based on soil or root part, the colonization of ROR didn't indicate a significant difference. The colonization of introduced 3 fluorescent pseudomonads was observed in the range of $2.3-4.0{\times}10^7/g$ in the root surface and $0.9-1.8{\times}10^7/g$ in soil, but the bacterial densities were significantly different. When growth promoting organisms were introduced into the soil, the population of Pseudomonas sp. in the root part treated with P. putida RE10 was similar in number to the control and recorded the low numerical value as compared with any other treatments. The population density of Pseudomonas sp. in the treatment of P. putida RE10 indicated significant differences in the root part, but didn't show significant differences in soil. The population densities of infested FOR and introduced bacteria on the root were high in contrast to those of soil. P. putida RE10 and Pseudomonas sp. EN415 used in this experiment appeared to induce the resistance of the host against Fusarium wilt.

  • PDF

Effect of Timing of Nutrient Starvation during Transplant Production on the Growth of Runner Plants and Yield of Strawberry 'Seolhyang' (딸기 '설향' 육묘기 양분 공급 중단 시기가 자묘 생육 및 수량에 미치는 영향)

  • Kim, Dae-Young;Chae, Won Byoung;Kwak, Jung-Ho;Park, Suhyung;Cheong, Seung-Ryong;Choi, Jong Myung;Yoon, Moo Kyoung
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.421-426
    • /
    • 2013
  • This study was conducted to investigate the effects of timing of nutrient starvation during transplant production on growth of runner plants and yield of strawberry 'Seolhyang' (Fragaria ${\times}$ ananassa). Nutrient solution supply at the level of EC (electrical conductivity) 0.8 $dS{\cdot}m^{-1}$ was terminated at interval about 10 days between July 25 and September 5. As a result, the growth of above-ground part was inhibited while root growth increased when the nutrient starvation treatment had been brought forward to July 25. It also reduced the T/R ratio significantly and chlorophyll content was tended to be lower than the other treatment. In addition, it significantly promoted the budding, flowering and harvest of first flower cluster. On the other hand, the period of harvest was delayed more than two weeks when the nutrients were continuously supplied after the middle of August. An accumulated marketable fruit yield per plant until the end of January and February was 169 and 266g, respectively in the treatment of nutrient starvation on July 25, which was 71 and 12% increase, respectively, as compared with those in the treatment of September 5. Therefore, the appropriate nutrient starvation in the late season of strawberry nursery period could be expected the increase in yield and income during the winter season by promoting the flower bud differentiation as reducing the endogenous nitrate level of the plantlet.

Characteristics of Growth, Yield, and Physiological Responses of Small-Sized Watermelons to Different Soil Moisture Contents Affected by Irrigation Starting Point in a Plastic Greenhouse (소형 수박 시설 재배 시 관수개시점에 따른 토양수분 함량별 생육, 수량 및 생리적 반응 특성 구명)

  • Huh, Yoon-Sun;Kim, Eun-Jeong;Noh, Sol-Ji;Jeon, Yu-Min;Park, Sung-Won;Yun, Geon-Sig;Kim, Tae-Il;Kim, Young-Ho
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.388-398
    • /
    • 2020
  • Watermelon yield mainly depends on soil water content controlled by irrigation in a plastic greenhouse. In this study, we investigated the effect of different soil moisture contents affected by irrigation starting point on growth, yield, and physiological responses of small-sized watermelons. Irrigation was initiated at 5 different levels of soil water content as a starting point with soil moisture detecting sensor after 14 days of transplanting, and stopped at 7 ~ 10 days before harvest. These treatments were compared with the conventional periodic irrigation as control. When soil had the lowest moisture content (-50 kPa), the overall shoot growth was retarded, but the root length and root dry weight increased. The photosynthetic parameters (photosynthetic rate, stomatal conductance, and transpiration rate) of watermelon leaves decreased significantly in the lowest soil moisture content (-50 kPa). On the other hand, the photosynthetic rates of watermelon leaves grown with irrigation starting point between -20 and -40 kPa were observed to be higher than those of other treatments. Fruit set rate and marketable fruit yield increased significantly at -30 kPa and -40 kPa. Proline, abscisic acid (ABA), total phenol and citrulline, which are known to contribute to stress tolerance under drought condition, increased as soil water content decreased, particularly, the largest increases were recorded at -50 kPa. From these results, it was found that an appropriate water supply adjusted with an irrigation starting point between -30 and -40 kPa could help to keep favorable soil water content during the cultivation of small-sized watermelons, promoting the marketable fruit production as well as inducing the vigorous plant growth and reproductive development.

Height Suppression of Cucumber and Tomato Plug Seedlings Using of Brushing Stimulus (브러싱 자극을 이용한 오이와 토마토 공정묘의 초장 억제)

  • Kim, Hyeon Min;Lee, Hye Ri;Jeong, Hyeon Woo;Kim, Hye Min;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.285-293
    • /
    • 2018
  • This study aimed to evaluate the effect of height suppression of cucumber and tomato plug seedlings as affected by mechanical stimulus using brushing as environment-friendly method. Cucumber (Cucumis sativus L. 'Joeunbaekdadagi') and tomato (Solanum lycopersicum L. 'Mini Chal') seeds were sown in 40-cell plug trays ($54{\times}27.5{\times}5cm$) filled with growing medium on Oct. 9, 2017. The cultivation environment in a venlo-type glasshouse was maintained as cultivation temperature range of $15-25^{\circ}C$ and the relative humidity of $50{\pm}10%$. Nontreatment and diniconazole ($7.5mg{\cdot}L^{-1}$) application at 15 days after sowing were used as the control. In addition, brushing treatments in cucumber and tomato were applied interval of 2, 4 or 6 hrs for 15 and 20 days, respectively. Plant height, hypocotyl length, and internode length were inhibited for cucumber and tomato in the diniconazole treatment than in the control. The leaf size was reduced, both cucumber and tomato, while the SPAD increased under the diniconazole treatment. However, stem diameter of cucumber was the thickest in the 2 hrs brushing interval treatment. Fresh weights of shoot and root were the significantly lowest in the diniconazole treatment. Application of brushing improved seedlings quality by promoting dry weights of shoot and root, and compactness of tomato seedlings. The chlorophyll fluorescence of tomato seedlings drastically decreased with 2 hrs treatment, indicating that mechanical stress by brushing treatment. The relative growth rate of tomato seedlings was significantly lower in the diniconazole treatment, but cucumber seedlings were not significantly different in all treatments. As a results, height suppression of cucumber and tomato seedlings was best achievement in the diniconazole treatment by the chemical as growth regulator. In an environment-friendly point of view, however, it is considered that 2 hrs brushing interval treatment can be the applicability for replacing the chemical methods in plug seedling growth of cucumber and tomato.