• 제목/요약/키워드: plant genomes

검색결과 180건 처리시간 0.026초

Analysis of in planta Expressed Orphan Genes in the Rice Blast Fungus Magnaporthe oryzae

  • Sadat, Md. Abu;Jeon, Junhyun;Mir, Albely Afifa;Kim, Seongbeom;Choi, Jaeyoung;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • 제30권4호
    • /
    • pp.367-374
    • /
    • 2014
  • Genomes contain a large number of unique genes which have not been found in other species. Although the origin of such "orphan" genes remains unclear, they are thought to be involved in species-specific adaptive processes. Here, we analyzed seven orphan genes (MoSPC1 to MoSPC7) prioritized based on in planta expressed sequence tag data in the rice blast fungus, Magnaporthe oryzae. Expression analysis using qRT-PCR confirmed the expression of four genes (MoSPC1, MoSPC2, MoSPC3 and MoSPC7) during plant infection. However, individual deletion mutants of these four genes did not differ from the wild-type strain for all phenotypes examined, including pathogenicity. The length, GC contents, codon adaptation index and expression during mycelial growth of the four genes suggest that these genes formed during the evolutionary history of M. oryzae. Synteny analyses using closely related fungal species corroborated the notion that these genes evolved de novo in the M. oryzae genome. In this report, we discuss our inability to detect phenotypic changes in the four deletion mutants. Based on these results, the four orphan genes may be products of de novo gene birth processes, and their adaptive potential is in the course of being tested for retention or extinction through natural selection.

Plant RNA Virus Sequences Identified in Kimchi by Microbial Metatranscriptome Analysis

  • Kim, Dong Seon;Jung, Ji Young;Wang, Yao;Oh, Hye Ji;Choi, Dongjin;Jeon, Che Ok;Hahn, Yoonsoo
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권7호
    • /
    • pp.979-986
    • /
    • 2014
  • Plant pathogenic RNA viruses are present in a variety of plant-based foods. When ingested by humans, these viruses can survive the passage through the digestive tract, and are frequently detected in human feces. Kimchi is a traditional fermented Korean food made from cabbage or vegetables, with a variety of other plant-based ingredients, including ground red pepper and garlic paste. We analyzed microbial metatranscriptome data from kimchi at five fermentation stages to identify plant RNA virus-derived sequences. We successfully identified a substantial amount of plant RNA virus sequences, especially during the early stages of fermentation: 23.47% and 16.45% of total clean reads on days 7 and 13, respectively. The most abundant plant RNA virus sequences were from pepper mild mottle virus, a major pathogen of red peppers; this constituted 95% of the total RNA virus sequences identified throughout the fermentation period. We observed distinct sequencing read-depth distributions for plant RNA virus genomes, possibly implying intrinsic and/or technical biases during the metatranscriptome generation procedure. We also identified RNA virus sequences in publicly available microbial metatranscriptome data sets. We propose that metatranscriptome data may serve as a valuable resource for RNA virus detection, and a systematic screening of the ingredients may help prevent the use of virus-infected low-quality materials for food production.

Application of a Reassortant Cucumber mosaic virus Vector for Gene Silencing in Tomato and Chili Pepper Plants

  • Hong, Jin-Sung;Rhee, Sun-Ju;Kim, Eun-Ji;Kim, Tae-Sung;Ryu, Ki-Hyun;Masuta, Chikara;Lee, Gung-Pyo
    • The Plant Pathology Journal
    • /
    • 제28권1호
    • /
    • pp.81-86
    • /
    • 2012
  • We developed a reassortant RNA virus vector derived from $Cucumber$ $mosaic$ $virus$ (CMV), which has advantages of very wide host range and can efficiently induce gene silencing in a few model plants. Certain CMV isolates, however, show limited host ranges presumably because they naturally co-evolved with their own hosts. We used a reassortant comprised of two strains of CMV, Y-CMV and Gn-CMV, to broaden the host range and to develop a virus vector for virus-induced gene silencing (VIGS). Gn-CMV could infect chili pepper and tomato more efficiently than Y-CMV. Gn-CMV RNA1, 3 and Y-CMV RNA2-A1 vector were newly reconstructed, and the transcript mixture of RNA1 and 3 genomes of Gn-CMV and RNA2 genome of Y-CMV RNA2 containing portions of the endogenous phytoene desaturase (PDS) gene (CMV2A1::PDSs) was inoculated onto chili pepper (cv. Chung-yang), tomato (cvs. Bloody butcher, Tigerella, Silvery fir tree, and Czech bush) and $Nicotiana$ $benthamiana$. All the tested plants infected by the reassortant CMV vector showed typical photo-bleaching phenotypes and reduced expression levels of $PDS$ mRNA. These results suggest that the reassortant CMV vector would be a useful tool for the rapid induction of the RNA silencing of endogenous genes in chili pepper and tomato plants.

Characteristics of 'Hongrou Taoye', a Grafted Chimera in Sweet Orange and Satsuma Mandarin

  • Zhang, Min;Xie, Zongzhou;Deng, Xiuxin;Liao, Shengcai;Song, Wenhua;Tan, Yong
    • 원예과학기술지
    • /
    • 제33권3호
    • /
    • pp.390-395
    • /
    • 2015
  • The synthesis of chimeras is a breeding approach for horticultural crops. In our breeding program, a new diploid citrus chimera, named 'Hongrou Taoye' (Citrus sinensis [L.] Osbeck + Citrus unshiu Marc.), was found arising at the junction where a 'Taoye' sweet orange (C. sinensis) scion was grafted onto Satsuma mandarin (C. unshiu). As an artificial chimera, its fruit traits derived from the L1 cell layer, with juice color and carotenoid complement, in which ${\beta}$-cryptoxanthin accumulated predominantly, similar to those of Satsuma mandarin. By contrast, traits originating from the L2/L3 cell layer, including pollen, seed, and rind aroma characteristics, were the same as those of 'Taoye' sweet orange (the scion). SSR and cpSSR analyses showed that both nuclear and chloroplast genomes of the chimera were a combination of both donor parents. 'Hongrou Taoye' thus combined the valuable traits of both donor plants, and therefore has good potential in citrus fresh market.

Intraspecific variation of gene structure in the mitochondrial large subunit ribosomal RNA and cytochrome c oxidase subunit 1 of Pyropia yezoensis (Bangiales, Rhodophyta)

  • Hwang, Il Ki;Kim, Seung-Oh;Hwang, Mi Sook;Park, Eun-Jeong;Ha, Dong-Soo;Lee, Sang-Rae
    • ALGAE
    • /
    • 제33권1호
    • /
    • pp.49-54
    • /
    • 2018
  • Red algal mitochondrial genomes (mtDNAs) can provide useful information on species identification. mtDNAs of Pyropia / Porphyra (Bangiales, Rhodophyta) have shown diverse variation in their size and gene structure. In particular, the introns and intronic open reading frames found in the ribosomal RNA large subunit gene (rnl) and cytochrome c oxidase subunit 1 gene (cox1) significantly vary the mitochondrial genome size in Pyropia / Porphyra species. In this study, we examined the exon / intron structure of rnl and cox1 genes of Pyropia yezoensis at the intraspecific level. The combined data of rnl and cox1 genes exhibited 12 genotypes for 40 P. yezoensis strains, based on the existence of introns. These genotypes were more effective to identify P. yezoensis strains in comparison to the traditional DNA barcode cox1 marker (5 haplotypes). Therefore, the variation in gene structure of rnl and cox1 can be a novel molecular marker to discriminate the strains of Pyropia species.

Development of Chloroplast Microsatellite Markers for Invasive Carduus (Asteraceae) between East Asia and North America

  • Jung, Joonhyung;Kim, Changkyun;Do, Hoang Dang Khoa;Yoon, Changyoung;Kim, Joo-Hwan
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 춘계학술발표회
    • /
    • pp.38-38
    • /
    • 2018
  • The genus Carduus (Asteraceae), containing ca. 90 species, is mainly distributed in Eurasia and Africa. Carduus species are one of the most hazardous invasive species, which causes serious environmental threats and biodiversity damages in North America. Thus, the member of Carduus are targeted for classical biological control in this region. Here, we provide the complete cp genome of Carduus crispus using next-generation sequencing technology. The size of cp genomes of C. crispus is 152,342 bp. It shows a typical quadripartite structure, consisting of the large single copy (LSC; 83,254 bp), small single copy (SSC; 18,706 bp), separated by a pair of inverted repeats (IRs; 25,191 bp). It contains 115 unique genes of which 21 genes duplicated in the IR regions. The cpSSR regions of Carduus species were searched through the complete chloroplast genome sequence using a tandem repeat search tool in Geneious with the parameters set to ${\geq}7$ mononucleotide repeats, ${\geq}4$ di- and trinucleotide repeats, and ${\geq}3$ tetra-, penta-, and hexanucleotide repeats. A total of 22 repeat motifs were identified, which may be useful for molecular identification of Korean Carduus species (C. cripus), and providing a guideline for its conservation.

  • PDF

Prospect of plant molecular cytogenetics in the 21st century

  • Mukai, Yasuhiko
    • 한국생명과학회:학술대회논문집
    • /
    • 한국생명과학회 2003년도 제40회 국제학술심포지움
    • /
    • pp.14-27
    • /
    • 2003
  • The genomes of Arabidopsis and rice have been fully sequenced. Genomic sequencing provides global information about genome structure and organization. A comprehensive research account of our recent studies conducted on genome painting, comparative genomics and genome fusion is provided in order to project the prospects of plant cytogenetic research in post-genomics era. Genome analysis by GISH using genome painting is demonstrated as an excellent means suitable for visualization of a whole genome, since total genomic DNA representing the overall molecular composition of the genome is used as a probe. FISH on extended DNA fibers has been developed for high-resolution FISH and has contributed to determining the copy number and order of genes. We have also mapped a number of genes involving starch synthesis on wheat chromosomes by FISH and compared the position of these genes on linkage map of rice. Macro synteny between wheat and rice can be observed by comparing the location of these genes in spite of the fact that the size of DNA per chromosome differs by 20 fold in two. Moreover, to approach our goal towards making bread and udon noodles from rice flour in future by incorporating bread making and the noodle qualifies in rice, we have been successful in introducing large genomic DNA fragments containing agronomically important genes of wheat into a rice by successive introduction of large insert BAC clones, there by expanding genetic variability in rice. We call this method genome fusion.

  • PDF

Molecular Genetics of the Model Legume Medicago truncatula

  • Nam, Young-Woo
    • The Plant Pathology Journal
    • /
    • 제17권2호
    • /
    • pp.67-70
    • /
    • 2001
  • Medicago truncatula is a diploid legume plant related to the forage crop alfalfa. Recently, it has been chosen as a model species for genomic studies due to its small genome, self-fertility, short generation time, and high transformation efficiency. M. truncatula engages in symbiosis with nitrogen-fixing soil bacterium Rhizobium meliloti. M. truncatula mutants that are defective in nodulation and developmental processes have been generated. Some of these mutants exhibited altered phenotypes in symbiotic responses such as root hair deformation, expression of nodulin genes, and calcium spiking. Thus, the genes controlling these traits are likely to encode functions that are required for Nod-factor signal transduction pathways. To facilitate genome analysis and map-based cloning of symbiotic genes, a bacterial artificial chromosome library was constructed. An efficient polymerase chain reaction-based screening of the library was devised to fasten physical mapping of specific genomic regions. As a genomics approach, comparative mapping revealed high levels of macro- and microsynteny between M. truncatula and other legume genomes. Expressed sequence tags and microarray profiles reflecting the genetic and biochemical events associated with the development and environmental interactions of M. truncatula are assembled in the databases. Together, these genomics programs will help enrich our understanding of the legume biology.

  • PDF

Extensive Reorganization of the Chloroplast Genome of Corydalis platycarpa: A Comparative Analysis of their Organization and Evolution with other Corydalis plastomes

  • Grusamy Raman;SeonJoo Park
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2023년도 임시총회 및 춘계학술대회
    • /
    • pp.15-15
    • /
    • 2023
  • The chloroplast (cp) is an autonomous plant organelle with an individual genome that codes for essential cellular functions. The architecture and gene content of the cp genome is highly conserved in angiosperms. The plastome of Corydalis belongs to the Papaveraceae family, and the genome is comprised of unusual rearrangements and gene content. Thus far, no extensive comparative studies have been carried out to understand the evolution of Corydalis chloroplast genomes. Therefore, the Corydalis platycarpa cp genome was sequenced, and wide-scale comparative studies were conducted using publicly available twenty Corydalis plastomes. Comparative analyses showed that an extensive genome rearrangement and IR expansion occurred, and these events evolved independently in the Corydalis species. In addition, the protein-coding genes accD and the ndh gene loss events occurred in the common ancestor of the Corydalis and sub-clade of the Corydalis lineage, respectively. The gene ndh lost in the Corydalis-sub clade species is distributed predominantly in the Qinghai-Tibetan plateau (QTP) region. The molecular clock analysis suggests that the divergence time of all the ndh gene lost Corydalis sub-clade species occurred in the 44.31 - 15.71 mya. These results coincide very well with the uplift of the Qinghai-Tibet Plateau in the Oligocene and Miocene periods, and maybe during this period, it probably triggered the radiation of the Corydalis species. To the best of the authors' knowledge, this is the first large-scale comparative study of Corydalis plastomes and their evolution. The present study may provide insights into the plastome architecture and the molecular evolution of Corydalis species.

  • PDF

CRISPR base editor-based targeted random mutagenesis (BE-TRM) toolbox for directed evolution

  • Rahul Mahadev Shelake;Dibyajyoti Pramanik;Jae-Yean Kim
    • BMB Reports
    • /
    • 제57권1호
    • /
    • pp.30-39
    • /
    • 2024
  • Directed evolution (DE) of desired locus by targeted random mutagenesis (TRM) tools is a powerful approach for generating genetic variations with novel or improved functions, particularly in complex genomes. TRM-based DE involves developing a mutant library of targeted DNA sequences and screening the variants for the desired properties. However, DE methods have for a long time been confined to bacteria and yeasts. Lately, CRISPR/Cas and DNA deaminase-based tools that circumvent enduring barriers such as longer life cycle, small library sizes, and low mutation rates have been developed to facilitate DE in native genetic environments of multicellular organisms. Notably, deaminase-based base editing-TRM (BE-TRM) tools have greatly expanded the scope and efficiency of DE schemes by enabling base substitutions and randomization of targeted DNA sequences. BE-TRM tools provide a robust platform for the continuous molecular evolution of desired proteins, metabolic pathway engineering, creation of a mutant library of desired locus to evolve novel functions, and other applications, such as predicting mutants conferring antibiotic resistance. This review provides timely updates on the recent advances in BE-TRM tools for DE, their applications in biology, and future directions for further improvements.