DOI QR코드

DOI QR Code

CRISPR base editor-based targeted random mutagenesis (BE-TRM) toolbox for directed evolution

  • Rahul Mahadev Shelake (Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Dibyajyoti Pramanik (Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Jae-Yean Kim (Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
  • Received : 2023.05.22
  • Accepted : 2023.08.16
  • Published : 2024.01.31

Abstract

Directed evolution (DE) of desired locus by targeted random mutagenesis (TRM) tools is a powerful approach for generating genetic variations with novel or improved functions, particularly in complex genomes. TRM-based DE involves developing a mutant library of targeted DNA sequences and screening the variants for the desired properties. However, DE methods have for a long time been confined to bacteria and yeasts. Lately, CRISPR/Cas and DNA deaminase-based tools that circumvent enduring barriers such as longer life cycle, small library sizes, and low mutation rates have been developed to facilitate DE in native genetic environments of multicellular organisms. Notably, deaminase-based base editing-TRM (BE-TRM) tools have greatly expanded the scope and efficiency of DE schemes by enabling base substitutions and randomization of targeted DNA sequences. BE-TRM tools provide a robust platform for the continuous molecular evolution of desired proteins, metabolic pathway engineering, creation of a mutant library of desired locus to evolve novel functions, and other applications, such as predicting mutants conferring antibiotic resistance. This review provides timely updates on the recent advances in BE-TRM tools for DE, their applications in biology, and future directions for further improvements.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (grants NRF 2021R1I1A3057067, 2021R1A5A8029490, 2022R1A2C3010331) and the Program for New Plant Breeding Techniques (NBT, PJ01686702), Rural Development Administration (RDA), Korea.

References

  1. Wang Y, Xue P, Cao M et al (2021) Directed evolution: methodologies and applications. Chem Rev 121, 12384-12444  https://doi.org/10.1021/acs.chemrev.1c00260
  2. Shelake RM, Pramanik D, Kim JY (2019) Evolution of plant mutagenesis tools: a shifting paradigm from random to targeted genome editing. Plant Biotechnol Rep 13, 423-445  https://doi.org/10.1007/s11816-019-00562-z
  3. Rao GS, Jiang W and Mahfouz M (2021) Synthetic directed evolution in plants: unlocking trait engineering and improvement. Synth Biol 6, ysab025 
  4. McLure RJ, Radford SE and Brockwell DJ (2022) High-throughput directed evolution: a golden era for protein science. Trends Chem 4, 378-391  https://doi.org/10.1016/j.trechm.2022.02.004
  5. Wang H, He Y, Wang Y et al (2022) Base editing-mediated targeted evolution of ACCase for herbicide-resistant rice mutants. J Integr Plant Biol 64, 2029-2032  https://doi.org/10.1111/jipb.13352
  6. Molina RS, Rix G, Mengiste AA et al (2022) In vivo hypermutation and continuous evolution. Nat Rev Methods Primers 2, 37 
  7. Alvarez B, Mencia M, de Lorenzo V and Fernandez LA (2020) In vivo diversification of target genomic sites using processive base deaminase fusions blocked by dCas9. Nat Commun 11, 6436 
  8. Chen H, Liu S, Padula S et al (2020) Efficient, continuous mutagenesis in human cells using a pseudo-random DNA editor. Nat Biotechnol 38, 165-168  https://doi.org/10.1038/s41587-019-0331-8
  9. Esvelt KM, Carlson JC and Liu DR (2011) A system for the continuous directed evolution of biomolecules. Nature 472, 499-503  https://doi.org/10.1038/nature09929
  10. Rees HA and Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19, 770-788  https://doi.org/10.1038/s41576-018-0059-1
  11. Lee HK, Oh Y, Hong J et al (2021) Development of CRISPR technology for precise single-base genome editing: a brief review. BMB Rep 54, 98-105  https://doi.org/10.5483/BMBRep.2021.54.2.217
  12. Nishida K, Arazoe T, Yachie N et al (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, 6436 
  13. Komor AC, Kim YB, Packer MS et al (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424  https://doi.org/10.1038/nature17946
  14. Gaudelli NM, Komor AC, Rees HA et al (2017) Programmable base editing of T to G C in genomic DNA without DNA cleavage. Nature 551, 464-471  https://doi.org/10.1038/nature24644
  15. Shelake RM, Pramanik D and Kim JY (2022) In vivo rapid investigation of CRISPR-based base editing components in Escherichia coli (IRI-CCE): a platform for evaluating base editing tools and their components. Int J Mol Sci 23, 1145 
  16. Pramanik D, Shelake RM, Kim MJ and Kim JY (2021) CRISPR-mediated engineering across the central dogma in plant biology for basic research and crop improvement. Mol Plant 14, 127-150  https://doi.org/10.1016/j.molp.2020.11.002
  17. Hess GT, Fresard L, Han K et al (2016) Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods 13, 1036-1042  https://doi.org/10.1038/nmeth.4038
  18. Halperin SO, Tou CJ, Wong EB et al (2018) CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature 560, 248-252  https://doi.org/10.1038/s41586-018-0384-8
  19. Nishida K and Kondo A (2021) Method for modifying genome sequence to introduce specific mutation to targeted DNA sequence by base-removal reaction, and molecular complex used therein. U.S. Patent Appl. No. 15/523, 939 
  20. Kim JY and Shelake RM (2021) Method for inducing reactive oxygen species-mediated base mutation of target gene. KR Patent Appl. No. 1020180096931 
  21. Klompe SE, Vo PLH, Halpin-Healy TS and Sternberg SH (2019) Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature 571, 219-225  https://doi.org/10.1038/s41586-019-1323-z
  22. Strecker J, Ladha A, Gardner Z et al (2019) RNA-guided DNA insertion with CRISPR-associated transposases. Science 365, 48-53  https://doi.org/10.1126/science.aax9181
  23. Anzalone AV, Randolph PB, Davis JR et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157  https://doi.org/10.1038/s41586-019-1711-4
  24. Packer MS and Liu DR (2015) Methods for the directed evolution of proteins. Nat Rev Genet 16, 379-394  https://doi.org/10.1038/nrg3927
  25. Ma Y, Zhang J, Yin W et al (2016) Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Methods 13, 1029-1035  https://doi.org/10.1038/nmeth.4027
  26. Kurt IC, Zhou R, Iyer S et al (2021) CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat Biotechnol 39, 41-46  https://doi.org/10.1038/s41587-020-0609-x
  27. Zhao D, Li J, Li S et al (2021) Glycosylase base editors enable C-to-A and C-to-G base changes. Nat Biotechnol 39, 35-40  https://doi.org/10.1038/s41587-020-0592-2
  28. Chen S, Liu Z, Lai L and Li Z (2022) Efficient C-To-G base editing with improved target compatibility using engineered deaminase-nCas9 fusions. CRISPR J 5, 389-396  https://doi.org/10.1089/crispr.2021.0124
  29. Sun N, Zhao D, Li S et al (2022) Reconstructed glycosylase base editors GBE2.0 with enhanced C-to-G base editing efficiency and purity. Mol Ther 30, 2452-2463  https://doi.org/10.1016/j.ymthe.2022.03.023
  30. Koblan LW, Arbab M, Shen MW et al (2021) Efficient C.G-to-G.C base editors developed using CRISPRi screens, target-library analysis, and machine learning. Nat Biotechnol 39, 1414-1425  https://doi.org/10.1038/s41587-021-00938-z
  31. Chen L, Park JE, Paa P et al (2021) Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nat Commun 12, 1384 
  32. Yuan T, Yan N, Fei T et al (2021) Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods. Nat Commun 12, 4902 
  33. Richter MF, Zhao KT, Eton E et al (2020) Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol 38, 883-891  https://doi.org/10.1038/s41587-020-0453-z
  34. Anzalone AV, Koblan LW and Liu DR (2020) Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38, 824-844  https://doi.org/10.1038/s41587-020-0561-9
  35. Gaudelli NM, Lam DK, Rees HA et al (2020) Directed evolution of adenine base editors with increased activity and therapeutic application. Nat Biotechnol 38, 892-900  https://doi.org/10.1038/s41587-020-0491-6
  36. Tong H, Wang X, Liu Y et al (2023) Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase. Nat Biotechnol 41, 1080-1084  https://doi.org/10.1038/s41587-022-01595-6
  37. Li C, Zhang R, Meng X et al (2020) Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat Biotechnol 38, 875-882  https://doi.org/10.1038/s41587-019-0393-7
  38. Xie J, Huang X, Wang X et al (2020) ACBE, a new base editor for simultaneous C-to-T and A-to-G substitutions in mammalian systems. BMC Biol 18, 131 
  39. Sakata RC, Ishiguro S, Mori H et al (2020) Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nat Biotechnol 38, 865-869  https://doi.org/10.1038/s41587-020-0509-0
  40. Zhang X, Zhu B, Chen L et al (2020) Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat Biotechnol 38, 856-860  https://doi.org/10.1038/s41587-020-0527-y
  41. Grunewald J, Zhou R, Lareau CA et al (2020) A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat Biotechnol 38, 861-864  https://doi.org/10.1038/s41587-020-0535-y
  42. Shelake RM, Pramanik D and Kim JY (2023) Improved dual base editor systems (iACBEs) for simultaneous conversion of adenine and cytosine in the bacterium Escherichia coli. mBio 14, e0229622 
  43. Hao W, Cui W, Suo F et al (2022) Construction and application of an efficient dual-base editing platform for Bacillus subtilis evolution employing programmable base conversion. Chem Sci 13, 14395-14409  https://doi.org/10.1039/D2SC05824C
  44. Tao W, Liu Q, Huang S et al (2021) CABE-RY: a PAMflexible dual-mutation base editor for reliable modeling of multi-nucleotide variants. Mol Ther Nucleic Acids 26, 114-121  https://doi.org/10.1016/j.omtn.2021.07.016
  45. Xiong X, Li Z, Liang J et al (2022) A cytosine base editor toolkit with varying activity windows and target scopes for versatile gene manipulation in plants. Nucleic Acids Res 50, 3565-3580  https://doi.org/10.1093/nar/gkac166
  46. Xue N, Liu X, Zhang D et al (2023) Improving adenine and dual base editors through introduction of TadA-8e and Rad51DBD. Nat Commun 14, 1224 
  47. Liang Y, Xie J, Zhang Q et al (2022) AGBE: a dual deaminase-mediated base editor by fusing CGBE with ABE for creating a saturated mutant population with multiple editing patterns. Nucleic Acids Res 50, 5384-5399  https://doi.org/10.1093/nar/gkac353
  48. Moore CL, Papa LJ and Shoulders MD (2018) A processive protein chimera introduces Mutations across defined DNA regions in vivo. J Am Chem Soc 140, 11560-11564  https://doi.org/10.1021/jacs.8b04001
  49. Cravens A, Jamil OK, Kong D et al (2021) Polymerase-guided base editing enables in vivo mutagenesis and rapid protein engineering. Nat Commun 12, 1579 
  50. Butt H, Ramirez JLM and Mahfouz M (2022) Synthetic evolution of herbicide resistance using a T7 RNAP-based random DNA base editor. Life Sci Alliance 5, e202201538 
  51. Park H and Kim S (2021) Gene-specific mutagenesis enables rapid continuous evolution of enzymes in vivo. Nucleic Acids Res 49, E32-E32  https://doi.org/10.1093/nar/gkaa1231
  52. Eom GE, Lee H and Kim S (2022) Development of a genome-targeting mutator for the adaptive evolution of microbial cells. Nucleic Acids Res 50, E38 
  53. Mengiste AA, Wilson RH, Weissman RF et al (2023) Expanded MutaT7 toolkit efficiently and simultaneously accesses all possible transition mutations in bacteria. Nucleic Acids Res 51, E31 
  54. Seo D, Koh B, Eom G et al (2023) A dual gene-specific mutator system installs all transition mutations at similar frequencies in vivo. Nucleic Acids Res 51, e59 
  55. Shelake RM, Kadam US, Kumar R et al (2022) Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: targets, tools, challenges, and perspectives. Plant Commun 3, 100417 
  56. Xu R, Kong F, Qin R et al (2021) Development of an efficient plant dual cytosine and adenine editor. J Integr Plant Biol 63, 1600-1605  https://doi.org/10.1111/jipb.13146
  57. Leong BJ and Hanson AD (2023) Continuous directed evolution of a feedback-resistant Arabidopsis arogenate dehydratase in plantized Escherichia coli. ACS Synth Biol 12, 43-50  https://doi.org/10.1021/acssynbio.2c00511
  58. Zhang X, Liu Z, Xu Y et al (2023) Activation-induced cytidine deaminase-based in vivo continuous evolution system enables rapid protein engineering. bioRxiv, https://doi.org/10.1101/2023.01.17.524385 
  59. Liu Z, Chen S and Wu J (2023) Advances in ultrahigh-throughput screening technologies for protein evolution. Trends Biotechnol 41, 1168-1181 https://doi.org/10.1016/j.tibtech.2023.03.010