• Title/Summary/Keyword: plant enzymes

Search Result 687, Processing Time 0.023 seconds

PCR-mediated Fingerprinting to Identify Dang-Gui(당귀) (당귀류 한약재의 유전자 감별 연구)

  • 최호영;정유헌;고지완
    • The Journal of Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.11-15
    • /
    • 2000
  • Radix Angelicae Gigantis is sweet and pungent in flavor, warm in property. Its effects are tonifying the blood, promoting blood circulation, relieving pain and moistening the bowels. Its indications are blood deficiency syndrome characterized by sallow complexion, dizziness, irregular menstruation, amenorrhea, pains due to blood stasis, and rheumatic arthralgia. Using genes of A. gigas, A. acutiloba, and A. sinensis, the origin of which is identified, as criteria, we analysed many kinds of Angelica with RAPD and RFLP on ITS region, in order to compare and discriminate genes extracted from crude drugs ‘Dang-gui’, that are produced in Korea on the one hand and imported on the other hand. We reached the following conclusion. 1. We could extract DNA from both original plant and dried plant. 2. Especially Uniprimer #1, Uniprimer #2, Uniprimer #4 and Uniprimer #9 were useful. 3. Among the restriction enzymes Sma I, Msp I, Hae III, and Hinf I, used in this experiment, four restriction enzymes except Hinf I could be used properly in discriminating all samples used as A. gigas. We think that this result can be used as a method of discriminating crude drug of Angelica L. related drugs, and used in controlling quality and circulation.

  • PDF

Fuzzy Logic Control of Rotating Drum Bioreactor for Improved Production of Amylase and Protease Enzymes by Aspergillus oryzae in Solid-State Fermentation

  • Sukumprasertsri, Monton;Unrean, Pornkamol;Pimsamarn, Jindarat;Kitsubun, Panit;Tongta, Anan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.335-342
    • /
    • 2013
  • In this study, we compared the performance of two control systems, fuzzy logic control (FLC) and conventional control (CC). The control systems were applied for controlling temperature and substrate moisture content in a solidstate fermentation for the biosynthesis of amylase and protease enzymes by Aspergillus oryzae. The fermentation process was achieved in a 200 L rotating drum bioreactor. Three factors affecting temperature and moisture content in the solid-state fermentation were considered. They were inlet air velocity, speed of the rotating drum bioreactor, and spray water addition. The fuzzy logic control system was designed using four input variables: air velocity, substrate temperature, fermentation time, and rotation speed. The temperature was controlled by two variables, inlet air velocity and rotational speed of bioreactor, while the moisture content was controlled by spray water. Experimental results confirmed that the FLC system could effectively control the temperature and moisture content of substrate better than the CC system, resulting in an increased enzyme production by A. oryzae. Thus, the fuzzy logic control is a promising control system that can be applied for enhanced production of enzymes in solidstate fermentation.

Exogenous proline mitigates the detrimental effects of saline and alkaline stresses in Leymus chinensis (Trin.)

  • Sun, Yan-Lin;Hong, Soon-Kwan
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.529-538
    • /
    • 2010
  • Proline accumulates in plants under environmental stresses including saline stress and alkaline stress. Here, we investigated the responses to two different stresses, saline stress (200 mM NaCl) and alkaline stress (100 mM $Na_2CO_3$) in two Leymus chinensis (Trin.) genotypes, LcWT07 and LcJS0107, and effects of exogenous proline on the activities of antioxidant enzymes. Both saline stress and alkaline stress significantly induced the accumulation of proline in leaves of the two genotypes after 96 h, and alkaline stress caused a transient and significant increase in LcJS0107 plants at 6 h. A reduction in the activities of catalase (CAT, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.11), but not in the activity of superoxide dismutase (SOD, EC 1.15.1.1), was detected in plants exposed to saline and alkaline stresses. Remarkable decrease in relative water contents (RWC) was found in 144 h stressed plants. However, lipid peroxidation estimated by malonyldialdehyde (MDA) content in leaves remained relatively stable. With the addition of exogenous proline, it did not cause changes of proline levels in two genotypes, but combined with saline or alkaline stress, the exogenous application of proline significantly induced proline accumulation after even short treatment periods. Combined with salt stress, the exogenous application also increased the activities of CAT and APX. These results indicated that exogenous proline not only increases proline levels in vivo as a osmotic adjustment under stress, but mitigates the detrimental effects of saline and alkaline stresses by increasing the activities of antioxidant enzymes.

Identification, Characterization, and Efficacy Evaluation of Bacillus velezensis for Shot-Hole Disease Biocontrol in Flowering Cherry

  • Han, Viet-Cuong;Yu, Nan Hee;Yoon, Hyeokjun;Ahn, Neung-Ho;Son, Youn Kyoung;Lee, Byoung-Hee;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.38 no.2
    • /
    • pp.115-130
    • /
    • 2022
  • Though information exists regarding the pathogenesis of the shot-hole disease (SH) in flowering cherry (FC), there has been a lack of research focusing on SH management. Therefore, here, we investigated the inhibitory activities of antagonistic bacteria against SH pathogens both in vitro and in vivo as well as their biochemical characteristics and bioactive compounds. Two biosurfactant-producing bacterial antagonists, identified as Bacillus velezensis strains JCK-1618 and JCK-1696, exhibited the best effects against the growth of both bacterial and fungal SH pathogens in vitro through their cell-free culture filtrates (CFCFs). These two strains also strongly inhibited the growth of the pathogens via the action of their antimicrobial diffusible compounds and antimicrobial volatile organic compounds (VOCs). Crude enzymes, solvent extracts, and biosurfactants of the two strains exhibited antimicrobial activities. Liquid chromatography/electrospray ionization time-of-flight mass spectrometric analysis of the partially purified active fractions revealed that the two antagonists produced three cyclic lipopeptides, including iturin A, fengycin A, and surfactin, and a polyketide, oxydifficidin. In a detached leaf assay, pre-treatment and co-treatment of FC leaves with the CFCFs led to a large reduction in the severity of the leaf spots caused by Epicoccum tobaicum and Bukholderia contaminans, respectively. In addition, the two antagonists produced indole-3-acetic acid, siderophore, and a series of hydrolytic enzymes, along with the formation of a substantial biofilm. To our knowledge, this is the first report of the antimicrobial activities of the diffusible compounds and VOCs of B. velezensis against the SH pathogens and their efficiency in the biocontrol of SH.

Overcoming Encouragement of Dragon Fruit Plant (Hylocereus undatus) against Stem Brown Spot Disease Caused by Neoscytalidium dimidiatum Using Bacillus subtilis Combined with Sodium Bicarbonate

  • Ratanaprom, Sanan;Nakkanong, Korakot;Nualsri, Charassri;Jiwanit, Palakrit;Rongsawat, Thanyakorn;Woraathakorn, Natthakorn
    • The Plant Pathology Journal
    • /
    • v.37 no.3
    • /
    • pp.205-214
    • /
    • 2021
  • The use of the supernatant from a Bacillus subtilis culture mixed with sodium bicarbonate was explored as a means of controlling stem brown spot disease in dragon fruit plants. In in vitro experiments, the B. subtilis supernatant used with sodium bicarbonate showed a strong inhibition effect on the growth of the fungus, Neoscytalidium dimidiatum, the agent causing stem brown spot disease and was notably effective in preventing fungal invasion of dragon fruit plant. This combination not only directly suppressed the growth of N. dimidiatum, but also indirectly affected the development of the disease by eliciting the dragon-fruit plant's defense response. Substantial levels of the pathogenesis-related proteins, chitinase and glucanase, and the phenylpropanoid biosynthetic pathway enzymes, peroxidase and phenyl alanine ammonia-lyase, were triggered. Significant lignin deposition was also detected in treated cladodes of injured dragon fruit plants in in vivo experiments. In summary, B. subtilis supernatant combined with sodium bicarbonate protected dragon fruit plant loss through stem brown spot disease during plant development in the field through pathogenic fungal inhibition and the induction of defense response mechanisms.

Two Groups of Phytoplasma from Chrysanthemum (Dendranthema grandiflorum) Distinguished by Symptoms and 16S rRNA Gene Sequence in Korea

  • Chung, Bong-Nam;Kim, Byung-Dong
    • The Plant Pathology Journal
    • /
    • v.21 no.2
    • /
    • pp.132-136
    • /
    • 2005
  • Two groups of phytoplasma were identified in chrysanthemum(Dendranthema grandiflorum) cv. Chunkwang showing distinct symptoms. Isolate Ph-ch1 showed symptoms of dwarf, witches'-broom, rosette and root death. The other isolate, Ph-ch2, revealed symptoms of dwarf, yellowing, leaf cupping, vein clearing and root death. The presence of phytoplasma structures in chrysanthemum leaf tissue was confirmed by transmission electron microscopy. The 16S rRNA gene was amplified from isolates Ph-ch1 and Ph-ch2 by PCR and cloned, and the nucleotide sequences were determined. In RFLP analysis, isolate Ph-ch2 showed profiles identical to Ph-ch1, except with restriction enzymes HhaI and MseI. The sequence data showed that isolate Ph-ch1 was most closely related to the aster yellows (AY) phytoplasma, and isolate Ph-ch2 was more closely related to stolbur phytoplasma than to AY phytoplasma. This is the first reported observation of stolbur phytoplasma in chrysanthemum species.

Genetic Diversity of Seven Strawberry mottle virus Isolates in Poland

  • Cieslinska, Miroslawa
    • The Plant Pathology Journal
    • /
    • v.35 no.4
    • /
    • pp.389-392
    • /
    • 2019
  • The studies on detection of the Strawberry mottle virus (SMoV) have been conducted in Poland for breeding programme purpose and for producers of strawberry plant material. Leaf samples collected from infected strawberry plants were grafted on Fragaria sp. Indicators which were maintained in greenhouse for further study. Seven Fragaria vesca var. semperflorens 'Alpine' indicators infected by SMoV were used for the study aimed on molecular characterization of virus isolates. Partial RNA2 was amplified from total nucleic acids using the RT-PCR method. The obtained amplicons separately digested with BfaI, FauI, HaeIII, HincI, and TaqI enzymes showed different restriction profiles. The nucleotide sequences analysis of RNA2 fragment confirmed the genetic diversity of the SMoV isolates as their similarity ranged from 94.7 to 100%. Polish isolates shared 75.7-99.2% identity with sequence of the virus strains from the Czech Republic, the Netherlands, and Canada. Phylogenetic analysis resulted in grouping of the isolates found in Poland together with one of the Czech strain whereas two other from the Czech and the strains from the Netherlands and Canada created the separate cluster.

Plant Regeneration of B.juncea Through Plant Tissue and Protoplast Culture

  • Lian, Yu-Ji;Lim, Hak-Tae
    • Journal of Plant Biotechnology
    • /
    • v.3 no.1
    • /
    • pp.27-31
    • /
    • 2001
  • New types of cytoplasmic male sterility in Brassica species would be very useful for the production of F$_1$, hybrid seeds. Leaves and stems of rapid cycling stock of B.juncea (CrGC4-3) containing Anand CMS were used as experimental materials for plant regeneration from protoplast culture. Very high plant regeneration rate (85%) was found in the Kao & Michayluk medium supplemented with 2 mg/L zeatin, 0.5 mg/L BAP, and 1 mg/L NAA when only leaf, not stem, segments were cultured. Protoplasts were isolated from leaves using mixtures of enzymes (1% Cellulycin, 0.5% Macerozyme) in 0.4 M mannitol and 50 mM $CaCl_2$.$2H_2$O. Mcrocalli induced from protoplasts were transferred to the shoot regeneration medium containing 2 mg/L BAP, 2 mg/L zeatin, and 0.5 mg/L NAA. After 60 days of initial protoplast culture, regenerated plantlets were obtained, acclimatized, transplanted into the pots, and grown up to the flowering stage.

  • PDF

Practical significance of plant growth-promoting rhizobacteria in sustainable agriculture: a review

  • Subhashini Wijeysingha;Buddhi C. Walpola;Yun-Gu Kang;Min-Ho Yoon;Taek-Keun Oh
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.759-771
    • /
    • 2023
  • Plant growth-promoting rhizobacteria (PGPR) are naturally occurring bacteria that intensively colonize plant roots and are crucial in promoting the crop growth. These beneficial microorganisms have garnered considerable attention as potential bio-inoculants for sustainable agriculture. PGPR directly interacts with plants by providing essential nutrients through nitrogen fixation and phosphate solubilization and accelerating the accessibility of other trace elements such as Cu, Zn, and Fe. Additionally, they produce plant growth-promoting phytohormones, such as indole acetic acids (IAA), indole butyric acids (IBA), gibberellins, and cytokinins.PGPR interacts with plants indirectly by protecting them from diseases and infections by producing antibiotics, siderophores, hydrogen cyanide, and fungal cell wall-degrading enzymes such as glucanases, chitinases, and proteases. Furthermore, PGPR protects plants against abiotic stresses such as drought and salinity by producing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and modulating plant stress markers. Bacteria belonging to genera such as Bacillus, Pseudomonas, Burkholderia, Pantoa, and Enterobacter exhibit multiple plant growth-promoting traits, that can enhance plant growth directly, indirectly, or through synergetic effects. This comprehensive review emphasizes how PGPR influences plant growth promotion and presents promising prospects for its application in sustainable agriculture.

In Vitro and In Vivo Antioxidant Activity of Aged Ginseng (Panax ginseng)

  • Chung, Soo Im;Kang, Mi Young;Lee, Sang Chul
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.1
    • /
    • pp.24-30
    • /
    • 2016
  • Fresh ginseng roots were aged in an oven at $80^{\circ}C$ for 14 d. The in vitro and in vivo antioxidant activities of this aged ginseng, in comparison with those of the white and red ginsengs, were evaluated. In in vitro antioxidant assays, the ethanolic extracts from aged ginseng showed significantly higher free radical scavenging activity and reducing power than those of the white and red ginsengs. In in vivo antioxidant assays, mice were fed a high fat diet supplemented with white, red, or aged ginseng powders. High fat feeding resulted in a significant increase in lipid peroxidation and a substantial decrease in antioxidant enzymes activities in the animals. However, diet supplementation of ginseng powders, particularly aged ginseng, markedly reduced lipid peroxidation and enhanced the antioxidant enzymes activities. The results illustrate that the aged ginseng has greater in vitro and in vivo antioxidant capacity than the white and red ginsengs. The aged ginseng also showed considerably higher total saponin, phenolic, and flavonoid contents, indicating that its antioxidant capacity may have been partly due to its high levels of antioxidant compounds. This new ginseng product may be useful as a functional food with strong antioxidant potential.