• Title/Summary/Keyword: plant engineering

Search Result 9,449, Processing Time 0.042 seconds

Improving Cooling System for Energy Saving in Composite Plant

  • Promwong, Pissanu;Chaikla, Amphawan;Masuchun, Ruedee;Chansangsuk, Dumri;Julsereewong, Prasit
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.730-735
    • /
    • 2004
  • This paper describes an improving cooling system in the composite plant. In order to save the energy, a plate-and-frame heat exchanger has been used to replace the traditional worm cooler. The composite plant in Thailand was studied as an illustrative case study. The experimental results demonstrating the saving in energy costs and some economic benefits of the proposed technique are obtained.

  • PDF

Towards the Development of Long-Life Crops by Genetic Engineering of Ethylene Sensitivity

  • Ezura, Hiroshi
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.345-352
    • /
    • 2000
  • Food production is a major role of agriculture. It has been projected that the world population continues to increase by the middle of the 21st century, and the population growth results in raising a serious problem of food shortage. Thus we have to increase food as possible. A considerable amount of crops have been abandoned due to short-life after postharvest. Ethylene is a factor responsible for the postharvest loss in crops, especially horticultural crops. If we can reduce ethylene production or sensitivity by genetic engineering, we can develop, so called,“long-life crop”conferring long postharvest lives. During last two decades, intensive research for molecular dissection of ethylene biosynthesis has been carried out, and the researchers have succeeded in engineering ethylene productivity in some crops. On the other hand, after the successful isolation of Arabidopsis ethylene receptor gene ETR1, the homolog genes have been isolated in various plant species. Currently the characterization of these genes and alteration of ethylene sensitivity using the genes are in progress. This review summarizes current progress in the analysis of these genes, and discusses genetic engineering of ethylene sensitivity using these genes.

  • PDF

공장공학(工場工學)(P. E)에서의 종합적(綜合的) 품질관리(品質管理) T. Q. C. in Plant-Engineering

  • Yun, Seok-Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.8 no.2
    • /
    • pp.29-37
    • /
    • 1980
  • The purpose of this study is to define the role of a T. Q. C. engineer in the plant engineering activities. A "plant engineering" moves to complete a new project through a series of stages such as: 1. Research & Development stage. 2. Economic evaluation & engineering design stage. 3. Erection & start up stage. 4. Final production & control stage. This suggests that the plant engineering project should be carried out with a wide variety of tasks, as well as a central control. For a successful completion of the project, a T. Q. C. engineer is required, in practice, either as a central activity creator or as a key advisor in each task.

  • PDF

Screening of Gamma Radiation-Induced Pathogen Resistance Rice Lines against Xanthomonas oryzae pv. oryzae (방사선을 이용한 벼 흰잎마름병 저항성 돌연변이 벼 계통의 선발)

  • Lim, Chan Ju;Lee, Ha Yeon;Kim, Woong Bom;Ahmad, Raza;Moon, Jae Sun;Kim, Dong Sub;Kwon, Suk-Yoon
    • Journal of Radiation Industry
    • /
    • v.4 no.3
    • /
    • pp.209-213
    • /
    • 2010
  • Bacterial blight is one of the most serious diseases of rice (Oryza sativa L.), and it has been known that Xanthomonas oryzae pv. oryzae (Xoo) causes this disease symptom. To develop resistance rice cultivars against Xoo, 3,000 lines of $M_3$ mutants, which were irradiated with gamma ray, were tested by 'scissor-dip method' primarily, and 191 putative resistant lines were selected. In $M_4$ generation, these lines were screened again with various ways such as measuring of symptom of bacterial blight in leaf, number of tiller, fresh weight, and phenotypic segregation ratio in next generation. Finally, six resistance lines were selected. RT-PCR analysis revealed that these lines displayed high level of R-genes such as Xa21, Pi36, and Pi-ta. These results indicate that mutations by gamma ray cause disruptions of regulatory signal transduction systems of these R-genes. Furthermore, these selected mutants could be useful for the development of rice cultivar resistant to Xoo.

Development of the FEED framework of the mineral carbonization pre-treatment system using systems engineering technique (시스템엔지니어링 기법을 이용한 광물탄산화 시스템 FEED 프레임워크 개발 방안에 관한 연구)

  • Kim, Jinil;Yeom, Choongsub;Ryu, BoHyun;Yoon, Munkyu;Kim, Joonyoung
    • Journal of Energy Engineering
    • /
    • v.27 no.1
    • /
    • pp.12-20
    • /
    • 2018
  • The FEED (Frond End Engineering Design) framework defines the activities and outputs to be performed at the FEED stage. In the meantime, many studies on FEED have been carried out, but most of them have slightly different opinions depending on experiences. It is important to define the FEED appropriately for the project and define the activities and outputs that are needed. It is also necessary to develop FEED processes on a solid basis, such as international system engineering process standards rather than experience. In this study, FEED is defined as suitable for the mineral carbonation system development project, and a method for developing the process and output to satisfy it is proposed based on the system engineering standard process.

Thermal-Hydraulic Analysis Methodology of Nuclear Power Plant Steam Generator (원전 증기발생기 열유동 해석법)

  • Choi Seok-Ki;Kim Seong-O;Choi Hoon-Ki
    • Journal of computational fluids engineering
    • /
    • v.7 no.2
    • /
    • pp.43-52
    • /
    • 2002
  • This paper presents the numerical methodology of ATHOS3 code for thermal hydraulic analysis of steam generators in nuclear power plant. Topics include porous media approach, governing equations, physical models and correlations for solid-to-fluid interaction and heat transfer, and numerical solution scheme. The ATHOS3 code is applied to the thermal hydraulic analysis of steam generator in the Korea Kori Unit-1 nuclear power plant and the computed results are presented

A GUI Implementation of a Power Plant Dynamic Simulation System on Windows NT/2000 (원도즈 NT/2000에서의 발전플랜트 동특성 해석시스템 그래픽 사용자 인터페이스 구현)

  • 이동수;이기현;조창호
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.05a
    • /
    • pp.197-201
    • /
    • 2002
  • APESS(Advanved Plant Engineering & Simulation System) is a dynamic simulation software for power plant which is being developed by Doosan Heavy Industries & Construction Co., Ltd. This Paper represents the GUI implementation of APESS on Windows NT/2000 operating system.

  • PDF

Seismic Qualification of Plant Protection System Cabinet for Nuclear Power Plant (원자력발전소 보호시스템 캐비넷의 내진검증)

  • 정명조;박근배;황원걸
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.148-155
    • /
    • 1992
  • A method to verify seismic qualification of the plant protection system cabinet for a nuclear power plant is presented. A finite element model of the cabinet is developed and correlated to the dynamic properties observed during in-situ vibration test of the actual structure. The results of the modal analysis provide insight into the fundamental dynamic properties of the structure. Techniques for verifying structural integrity and operability are exemplified by summarizing response spectrum and time history analyses of the structure.

  • PDF

Comparison of Plant Growth and Glucosinolates of Chinese Cabbage and Kale Crops under Three Cultivation Conditions

  • Kim, Kyung Hee;Chung, Sun-Ok
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.30-36
    • /
    • 2018
  • Purpose: The objective of this study is to evaluate the effect of cultivation conditions on the growth and glucosinolate content of Chinese cabbage and kale. Methods: Chinese cabbage and kale were grown in three different cultivation conditions, including a plant factory, greenhouse, and open field. Samples were collected at two harvesting times (10 d and 20 d after transplanting the seedlings). Nine growth parameters (plant height, plant width, number of leaves, petiole diameter, SPAD readout, leaf length, leaf width, stem diameter, and plant weight) were measured immediately after harvesting, and the samples were freeze-dried and stored until the glucosinolate content was analyzed. Mean values of the growth parameters and glucosinolate contents were evaluated using Duncan's multiple range tests. Results: The results indicated that the plant parameters of the Chinese cabbage and kale were greater for plants grown in the plant factory and greenhouse. The plant height, width, and weight showed significant differences in the Duncan's multiple range tests at a 5% level. The plant factory also produced greater contents of most of the glucosinolates. Conclusions: Three different cultivation conditions significantly affected the growth and glucosinolate contents of Chinese cabbage and kale. Further study is necessary to investigate other functional components and different vegetable varieties.