• Title/Summary/Keyword: plant disease control

Search Result 1,190, Processing Time 0.023 seconds

Regulation of Pathogenesis by Light in Cercospora zeae-maydis: An Updated Perspective

  • Kim, Hun;Ridenour, John B.;Dunkle, Larry D.;Bluhm, Burton H.
    • The Plant Pathology Journal
    • /
    • v.27 no.2
    • /
    • pp.103-109
    • /
    • 2011
  • The fungal genus Cercospora is one of the most ubiquitous groups of plant pathogenic fungi, and gray leaf spot caused by C. zeae-maydis is one of the most widespread and damaging foliar diseases of maize in the world. While light has been implicated as a critical environmental regulator of pathogenesis in C. zeae-maydis, the relationship between light and the development of disease is not fully understood. Recent discoveries have provided new insights into how light influences pathogenesis and morphogenesis in C. zeae-maydis, particularly at the molecular level. This review is focused on integrating old and new information to provide an updated perspective of how light influences pathogenesis, and provides a working model to explain some of the underlying molecular mechanisms. Ultimately, a thorough molecular-level understanding of how light regulates pathogenesis will augment efforts to manage gray leaf spot by improving host resistance and disease management strategies.

Biological Control of Apple Anthracnose by Paenibacillus polymyxa APEC128, an Antagonistic Rhizobacterium

  • Kim, Young Soo;Balaraju, Kotnala;Jeon, Yongho
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.251-259
    • /
    • 2016
  • The present study investigated the suppression of the disease development of anthracnose caused by Colletotrichum gloeosporioides and C. acutatum in harvested apples using an antagonistic rhizobacterium Paenibacillus polymyxa APEC128 (APEC128). Out of 30 bacterial isolates from apple rhizosphere screened for antagonistic activity, the most effective strain was APEC128 as inferred from the size of the inhibition zone. This strain showed a greater growth in brain-heart infusion (BHI) broth compared to other growth media. There was a reduction in anthracnose symptoms caused by the two fungal pathogens in harvested apples after their treatment with APEC128 in comparison with non-treated control. This effect is explained by the increased production of protease and amylase by APEC128, which might have inhibited mycelial growth. In apples treated with different APEC128 suspensions, the disease caused by C. gloeosporioides and C. acutatum was greatly suppressed (by 83.6% and 79%, respectively) in treatments with the concentration of $1{\times}10^8$ colony forming units (cfu)/ml compared to other lower dosages, suggesting that the suppression of anthracnose development on harvested apples is dose-dependent. These results indicated that APEC128 is one of the promising agents in the biocontrol of apple anthracnose, which might help to increase the shelf-life of apple fruit during the post-harvest period.

Diagnosis and Control of Major Leaf Diseases on Kiwifruit in Korea (키위 잎 주요 병 진단 및 방제)

  • Kim, Gyoung Hee;Koh, Young Jin
    • Research in Plant Disease
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Bacterial diseases such as bacterial canker and bacterial leaf spot and fungal diseases such as gray mold, powdery mildew, side rot and leaf spots are major diseases damaging leaves of kiwifruit in Korea. In this review, we summarize symptoms and epidemiological characteristics of the major bacterial and fungal leaf diseases of kiwifruit and propose proper control methods of the diseases that can be practically utilized at the farmers' kiwifruit orchards in order to prevent the diseases on the basis of our research works and field experiences and important research products conducted during the last three decades in the world.

Development qRT-PCR Protocol to Predict Strawberry Fusarium Wilt Occurrence

  • Hong, Sung Won;Kim, Da-Ran;Kim, Ji Su;Cho, Gyeongjun;Jeon, Chang Wook;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.163-170
    • /
    • 2018
  • Strawberry Fusarium wilt disease, caused by Fusarium oxysporum f. sp. fragariae, is the most devastating disease in strawberry production. The pathogen produces chlamydospores which tolerate against harsh environment, fungicide and survive for decades in soil. Development of detection and quantification techniques are regarded significantly in many soilborne pathogens to prevent damage from diseases. In this study, we improved specific-quantitative primers for F. oxysporum f. sp. fragariae to reveal correlation between the pathogen density and the disease severity. Standard curve $r^2$ value of the specific-quantitative primers for qRT-PCR and meting curve were over 0.99 and $80.5^{\circ}C$, respectively. Over pathogen $10^5cfu/g$ of soil was required to cause the disease in both lab and field conditions. With the minimum density to develop the wilt disease, the pathogen affected near 60% in nursery plantation. A biological control microbe agent and soil solarization reduced the pathogen population 2-fold and 1.5-fold in soil, respectively. The developed F. oxysporum f. sp. fragariae specific qRT-PCR protocol may contribute to evaluating soil healthiness and appropriate decision making to control the disease.

Xylella fastidiosa in Europe: From the Introduction to the Current Status

  • Vojislav, Trkulja;Andrija, Tomic;Renata, Ilicic;Milos, Nozinic;Tatjana Popovic, Milovanovic
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.551-571
    • /
    • 2022
  • Xylella fastidiosa is xylem-limited bacterium capable of infecting a wide range of host plants, resulting in Pierce's disease in grapevine, citrus variegated chlorosis, olive quick decline syndrome, peach phony disease, plum leaf scald, alfalfa dwarf, margin necrosis and leaf scorch affecting oleander, coffee, almond, pecan, mulberry, red maple, oak, and other types of cultivated and ornamental plants and forest trees. In the European Union, X. fastidiosa is listed as a quarantine organism. Since its first outbreak in the Apulia region of southern Italy in 2013 where it caused devastating disease on Olea europaea (called olive leaf scorch and quick decline), X. fastidiosa continued to spread and successfully established in some European countries (Corsica and PACA in France, Balearic Islands, Madrid and Comunitat Valenciana in Spain, and Porto in Portugal). The most recent data for Europe indicates that X. fastidiosa is present on 174 hosts, 25 of which were newly identified in 2021 (with further five hosts discovered in other parts of the world in the same year). From the six reported subspecies of X. fastidiosa worldwide, four have been recorded in European countries (fastidiosa, multiplex, pauca, and sandyi). Currently confirmed X. fastidiosa vector species are Philaenus spumarius, Neophilaenus campestris, and Philaenus italosignus, whereby only P. spumarius (which has been identified as the key vector in Apulia, Italy) is also present in Americas. X. fastidiosa control is currently based on pathogen-free propagation plant material, eradication, territory demarcation, and vector control, as well as use of resistant plant cultivars and bactericidal treatments.

Effect of Hydrogel on Survial of Serratia plymuthica A21-4 in Soils and Plant Disease Suppression

  • Shen, Shun-Shan;Kim, Won-Il;Park, Chang-Seuk
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.364-368
    • /
    • 2006
  • Survival of biocontrol agents and their effective colonization of rhizhosphere are the essential components for successful disease suppression. The effects of hydrogel supplement on bacterial survival and disease control were evaluated in pot and in the field. Addition of 2% hydrogel material to potting soil resulted in significant enhancement of colonization of biocontrol agent Serratia plymuthica A21-4 both in soil and rhizosphere of pepper plants. Rhizosphere colonization of S. plymuthica A21-4 retrieved from 40 days old pepper seedlings indicated 100 times higher bacterial population in hydrogel treated soil than in ordinary pot soil. The pepper plants sown in hydrogelated potting soil showed higher seed germination rate and the better growth of pepper plant than those in ordinary commercial pot soil. Although the suppression of Phytophthora capsid density in the potting soil by treatment of biocontrol agent A21-4 was not significantly different between in hydrogelated soil and ordinary potting soil, the suppression of Phytophthora blight between two treatments was significantly different. A21-4 treatment in hydrogelated potting soil was completely disease-free while same treatment in ordinary potting soil revealed 36% disease incidence. Our field study under natural disease occurrence also showed significantly less disease incidence(12.3%) in the A21-4 treatment in the hydrogelated soil compared to other treatments. Yield promotion of pepper by the A21-4 treatment in the hydrogelated potting soil was also recognized. Our results indicated that hydrogel amendment with biocontrol agent in pot soil would be a good alternative to protect pepper seedlings and increase plant yield.

In Vivo Antifungal Activities of 57 Plant Extracts Against Six Plant Pathogenic Fungi

  • Choi, Gyung-Ja;Jang, Kyoung-Soo;Kim, Jin-Seok;Lee, Seon-Woo;Cho, Jun-Young;Cho, Kwang-Yun;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.20 no.3
    • /
    • pp.184-191
    • /
    • 2004
  • Methanol extracts of fresh materials of 57 plants were screened for in vivo antifungal activity against Magna-porthe grisea, Corticium sasaki, Botrytis cinerea, Phyto-phthora infestans, Puccinia recondita, and Blumeria graminis f. sp. hordei. Among them, seven plant extracts showed disease-control efficacy of more than 90% against at least one of six plant diseases. None of the plant extracts was highly active against tomato gray mold. The methanol extracts of Chloranthus japonicus (roots) (CjR) and Paulownia coreana (stems) (PcS) displayed the highest antifungal activity; the CjR extract controlled the development of rice blast, rice sheath blight, and wheat leaf rust more than 90%, and tomato gray mold and tomato late blight more than 80%. The PcS extract displayed control values of more than 90 % against rice blast, wheat leaf rust, and barley powdery mildew and more than 80% against tomato gray mold. The extract of PcS also had a curative activity against rice sheath blight and that of CjR had a little curative activity against rice blast. On the other hand, the extract of Rumex acetocella roots reduced specifically the development of barley powdery mildew. Further studies on the characterization of antifungal substances in antifungal plant extracts are underway and their disease-control efficacy should be examined under greenhouse and field conditions.

In Vivo Antifungal Activities of the Methanol Extracts of Invasive Plant Species Against Plant Pathogenic Fungi

  • Bajpai, Vivek K.;Baek, Kwang-Hyun;Kim, Eun-Sil;Han, Jeong-Eun;Kwak, Myoung-Hai;Oh, Kyoung-Hee;Kim, Jin-Cheol;Kim, Soon-Ok;Choi, Gyung-Ja
    • The Plant Pathology Journal
    • /
    • v.28 no.3
    • /
    • pp.317-321
    • /
    • 2012
  • Plants are the promising reservoirs for natural products with their diverse secondary metabolites. Many invasive plants have been introduced in Korea, which adversely affect on the native ecosystem but holds difficulty removing them due to their proliferation. In this study, we evaluated disease control efficacy of methanol extracts from four invasive plant species against 7 representative crop pathogens. Methanol extract of Phytolacca americana effectively suppressed rice blast, tomato gray mold, and tomato late blight in a dose dependent manner. The methanol extract of Amorpha fruticosa also exhibited potent antifungal activity against pepper anthracnose in a concentration dependent way. These data suggest that the extracts of P. americana and A. fruticosa can be developed as plant disease protection agents against rice blast, tomato gray mold, tomato late blight, and pepper anthracnose. Furthermore, more extensive research will be required to identify and isolate active compounds from problematic invasive plant species to develop valuable agrochemicals.

Anemarrhena asphodeloides Extract Inhibits the Mycelial Growth of Magnaporthe oryzae and Controls the Rice Blast Disease

  • Joo, Myoung Ho;Yeo, Yu Mi;Choi, Pil Son;Lee, Jae Hyeok;Yang, Kwang-Yeol;Lee, Young Jin
    • Korean Journal of Plant Resources
    • /
    • v.31 no.6
    • /
    • pp.695-703
    • /
    • 2018
  • Previously, we have reported a plant extract isolated from Lysimachia foenum gracum Herba as a new environment friendly biopesticide that has the mycelial growth inhibition effect on Magnaporthe oryzae, the pathogenic fungus of the rice blast disease. For the finding of additional biopesticide candidate, we tested the mycelial growth inhibitory effects about 700 species of plant extracts on PDA media. Among them, the extract of Anemarrhena asphodeloides showed prominent inhibitory effect of which $IC_{50}$ was $139.7{\mu}g/ml$. Mycelial radii of M. oryzae were measured on PDA medium containing the four organic solvent fractions isolated from total extract from A. asphodeloides. Ethyl acetate fraction showed the impressive inhibitory effect of $IC_{50}$, $54.12{\mu}g/ml$. In the subsequent rice field test for the total extract of A. asphodeloides, we obtained encouraging 62.0% control rate of rice blast disease without any phytotoxicity. It is almost equivalent to that of chemical pesticides implying the applicability of the extract as a new biopesticide. In further study, the analysis of active ingredients of the extract would be necessary for the development of a new biopesticide and for the verification of cellular mechanism by which the mycelial growth of M. oryzae inhibited.

Study on Eco-friendly Control Effect of Natural Plant Extract Mixtures on Mulberry Popcorn Disease and Mulberry Sucker (천연 식물추출물 복합제를 이용한 오디균핵병 및 뽕나무이에 대한 친환경 방제기술 개발)

  • Ahn, In;Maeng, Woon-Young;Lee, In-Eae;Kim, Sam-Hyun;You, Ji-Won;Chang, Ki-Woon;Kim, Bae-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.338-342
    • /
    • 2013
  • BACKGROUND: Two Field tests were conducted at Buan and Yangpyung in 2012 and 2013 to confirm controlling effect of mulberry popcorn disease and mulberry Sucker pests which are becoming serious in mass cultivation area of eco-friendly farming mulberry. METHODS AND RESULTS: As the treatments, 4 Natural products and 3 microbials were applied and 4 mulching materials were used. On the prevent effect of mulberry popcorn disease(Sclerotinia shiraiana) by using mulching materials, nonwoven fabric mulching showed worse effect than non-mulched treatment plot. Moreover, rice straw mulching showed significantly worse effect compare to nonwoven fabric and herb mulching treatments. Natural plant extracts and microbials showed 40~65% control value in 2013, which is little bit worse than 2012 results. On the control effect of mulberry Sucker(Amomoneura mori), organic products which combined with neem, sophora and derris showed excellent result as similar control level of Thiophanate-methyl. It means the chemical products can be replaced with organic product. CONCLUSION(S): According to the 2 years studied results, integrate eco-friendly farming measures are recommended for control of mulberry popcorn disease, because any single method is seemed not sufficient enough. However, natural plant extracts mixture is recommended as a product to control of mulberry Sucker.