• Title/Summary/Keyword: plant community

Search Result 1,248, Processing Time 0.028 seconds

A Study on the Workplace Noise Environment of Office Areas in Power Plant (발전소 관리실의 작업환경 소음에 관한 연구)

  • 김병삼
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.35-41
    • /
    • 1998
  • The workplace noise environment is composed of three basic elements : manufacturing (in a generic sense) facilities, office areas, and the community around the facility. Work must be done by all employees , and this involves communication within a variety of locations within the facility ; areas may be extremely noisy, moderately noisy, or quiet, such as an office. At the same time, the facility should not be annoying to the community. In this paper, the workplace environmental noise of office areas in power plant are studied. Turbine generator in power plant generates the noise of 90∼95 dB(A) in the frequency range of 1 kHz, which may cause occupational hearing loss. By abatement method which are made of isolation material and distance damping effect, about 29.5 dB(A) reduction has been obtained in office areas of the Power Plant . But, the workplace environmental noise of office areas in the power plant is not suited to office's purpose.

Effect of Soil Factors on Vegetation Values of Salt Marsh Plant Communities: Multiple Regression Model

  • Ihm, Byung-Sun;Lee, Jeom-Sook;Kim, Jong-Wook;Kim, Joon-Ho
    • Journal of Ecology and Environment
    • /
    • v.29 no.4
    • /
    • pp.361-364
    • /
    • 2006
  • The objective of the current study was to characterize and apply multiple regression model relating to vegetation values of the plant species over salt marshes. For each salt marsh community, vegetation and soil variables were investigated in the western coast and the southern coast in South Korea. Osmotic potential of soil and $Cl^-$ content of soil as independent variable had positive and negative influences on vegetation values. Multiple regression model showed that vegetation values of 14 coastal plant communities were determined by pH of soil, osmotic potential of soil and sand content. The multiple regression equation may be applied to the explanation of distribution and abundance of plant communities with exiting ordination plots.

Changes of the Plant Community Structure during the Twenty-two Years(1972~1993) in Forest of Mt. Kwanak (관악산 삼림의 22년간(1972~1993)의 식물군집구조 변화)

  • Lee, Kyong-Jae;Song, Keun-Joon;Cho, Woo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.22 no.3
    • /
    • pp.79-90
    • /
    • 1994
  • This survey was ocnducted to investgate changes of the plant community structure from 1972 to 1993 in forest of Mt. Kwanak and thirty-five plots that the size of each plot was 10m${\times}$10m(100㎡) were set up and the vegetation analysis was caried out. By the TWINSPAN analysis, the plant community of survey area were divied into Quercus mongolica, Q. mongolica-Pinus densiflora(1), Q. mongolica-P. densiflora(2), Q. acutissima community. The successional trends of the woody species were seemed to be from P. densiflora, Sorbus alnifolia to Q. mongolica in the canopy layer. But the successional trends in the understory and shrub layer were difficult to suppose. The forest vegetation of Mt. Kwanak from 1972 to 1993 was severely decreased in species number and individuals. The sensitive species for the environmental pollution were selected, and the tolerant plants for the acid soil were increased. In comparision with the DBH class distribution from 1972 to 1993, it shows that the ecological succession has stopped. In the analysis of soil characteristics, soil acidification has taken place over last twenty-two years(from pH=5.40 to pH=4.53). The concentration of K+, Ca++ was severly decreased(from K+=0.60m.e./100g to K+=0.06m.e./100g, from Ca++=3.20m.e./100g to Ca++=0.63m.e./100g), which also could seemed to be cause of plant community decline.

  • PDF

Plant Species Assemblages and Vegetation Composition of Wetlands Within an Upland Forest

  • Huh, Man-Kyu;Lee, Hak-Young;Moon, Sung-Gi
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Small wetlands in an upland matrix can support diverse vegetation composition that increase both local and regional species richness. In this study we characterize the full range of wetland vegetation in an upland forest landscape at Dumyeong-ri, Gijang-gun, Busan. This wetland index can be calculated with species data, or with community type data as performed. Classified community types were used to describe vegetation at three wetlands and adjacent areas. The communities contained 28 species of vascular plants and 28 species were identified four plant community types. The Pinus densiflora type was dominated by Pinus densiflora and contained only four species. None of the plots had high proportion of standing water. The Carpinus laxiflora type had high obligate upland species (OU) and facultative upland species (FU). The Rhododendron mucronulatum type grew in over half of the plots included Pinus densiflora and Alnus japonica. Some species bother swampy areas adjacent to site C. The Miscanthus sacchariflorus type consisted of seasonal wetlands. The three sites contained nine species with the strongest indicator species being Miscanthus sinensis var. purpurascens, Miscanthus sinensis, Echinochloa crus-galli, and Sagittaria aginashi. This type had the highest proportions of obligate wetland species. Plant species richness averaged 5.069. Shannon-Weaver index of diversity also varied among the community types (F=22.7, df=4, 115), with the types FU having significantly higher value (2.746) than the others (1.057 for type FW and 1.600 for type OU). Regional plans including all of the diverse types of wetland vegetation in upland forests will contribute substantially to the conservation of plant diversity.

Short-Term Effects of Low-Level Heavy Metal Contamination on Soil Health Analyzed by Nematode Community Structure

  • Park, Byeong-Yong;Lee, Jae-Kook;Ro, Hee-Myong;Kim, Young Ho
    • The Plant Pathology Journal
    • /
    • v.32 no.4
    • /
    • pp.329-339
    • /
    • 2016
  • The short-term effects of low-level contamination by heavy metals (As, Cd, Cu, and Pb) on the soil health were examined by analyzing soil nematode community in soils planted with tomatoes. For this, the soils were irrigated with five metal concentrations ([1, 1/4, $1/4^2$, $1/4^3$, and 0] ${\times}$ maximum concentrations [MC] detected in irrigation waters near abandoned mine sites) for 18 weeks. Heavy metal concentrations were significantly increased in soils irrigated with MC of heavy metals, among which As and Cu exceeded the maximum heavy metal residue contents of soil approved in Korea. In no heavy metal treatment controls, nematode abundances for all trophic groups (except omnivorous-predatory nematodes [OP]) and colonizer-persister (cp) values (except cp-4-5) were significantly increased, and all maturity indices (except maturity index [MI] of plant-parasitic nematodes) and structure index (SI) were significantly decreased, suggesting the soil environments might have been disturbed during 18 weeks of tomato growth. There were no concentration-dependent significant decreases in richness, abundance, or MI for most heavy metals; however, their significant decreases occurred in abundance and richness of OP and cp-4, MI2-5 (excluding cp-1) and SI, indicating disturbed soil ecosystems, at the higher concentrations (MC and MC/4) of Pb that had the most significant negative correlation coefficients for heavy metal concentrations and nematode community among the heavy metals. Therefore, the short-term effects of low-level heavy metal contamination on soil health can be analyzed by nematode community structures before the appearance of plant damages caused by the abiotic agents, heavy metals.

Comparison of Vegetation and Habitat Condition of Dendranthema boreale and Dendranthema indicum in Korea (산국과 감국의 자생지 환경특성과 식생 비교)

  • Song, Hong-Seon;Kim, Seong-Min;Park, Yong-Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.1
    • /
    • pp.20-26
    • /
    • 2012
  • This study compared the differences between the Dendranthema boreale and Dendranthema indicum in their habitat, soil adaptability, species composition and community structure in Korea. More D. boreale distributed than D. indicum to in the place where high elevation and on the surface of low degree slope. Both D. boreale and D. indicum growed well in south-east direction of the slope. The soil pH of D. boreale and D. indicum was 6.1 and 7.1, respectively. Ca, Mg, Na and organic matter content of the soil of D. boreale habitat was significantly lower than that of the D. indicum habitat. There were 102 and 88 taxa, in D. boreale and D. indicum habitat, respectively. Both species generally distributed along with herbs than along with trees. The important species found in D. boreale habitat were Artemisia princeps (57.1%) and Humulus japonicus (33.3%), and the D. indicum habitat were Miscanthus sinensis (42.9%) and Lonicera japonica (38.1%). The D. boreale group was classified into Artemisia princeps, Crepidiastrum denticulatum, Miscanthus sinensis, Humulus japonicus, Pueraria lobata, Lespedeza bicolor, Lonicera japonica and Rubus crataegifolius community. The D. indicum group was classified into Artemisia capillaris, Peucedanum japonicum, Boehmeria pannosa, Pinus thunbergii, Lonicera japonica, Quercus acutissima and Robinia pseudoacacia community. There is a large difference bewteen D. boreale and D. indicum in their habitat, soil adaptability, species composition and community structure.

Effect of Bacillus mesonae H20-5 Treatment on Rhizospheric Bacterial Community of Tomato Plants under Salinity Stress

  • Lee, Shin Ae;Kim, Hyeon Su;Sang, Mee Kyung;Song, Jaekyeong;Weon, Hang-Yeon
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.662-672
    • /
    • 2021
  • Plant growth-promoting bacteria improve plant growth under abiotic stress conditions. However, their effects on microbial succession in the rhizosphere are poorly understood. In this study, the inoculants of Bacillus mesonae strain H20-5 were administered to tomato plants grown in soils with different salinity levels (EC of 2, 4, and 6 dS/m). The bacterial communities in the bulk and rhizosphere soils were examined 14 days after H20-5 treatment using Illumina MiSeq sequencing of the bacterial 16S rRNA gene. Although the abundance of H20-5 rapidly decreased in the bulk and rhizosphere soils, a shift in the bacterial community was observed following H20-5 treatment. The variation in bacterial communities due to H20-5 treatment was higher in the rhizosphere than in the bulk soils. Additionally, the bacterial species richness and diversity were greater in the H20-5 treated rhizosphere than in the control. The composition and structure of the bacterial communities varied with soil salinity levels, and those in the H20-5 treated rhizosphere soil were clustered. The members of Actinobacteria genera, including Kineosporia, Virgisporangium, Actinoplanes, Gaiella, Blastococcus, and Solirubrobacter, were enriched in the H20-5 treated rhizosphere soils. The microbial co-occurrence network of the bacterial community in the H20-5 treated rhizosphere soils had more modules and keystone taxa compared to the control. These findings revealed that the strain H20-5 induced systemic tolerance in tomato plants and influenced the diversity, composition, structure, and network of bacterial communities. The bacterial community in the H20-5 treated rhizosphere soils also appeared to be relatively stable to soil salinity changes.

Combined Application Effects of Arbuscular Mycorrhizal Fungi and Biochar on the Rhizosphere Fungal Community of Allium fistulosum L.

  • Chunxiang Ji;Yingyue Li;Qingchen Xiao;Zishan Li;Boyan Wang;Xiaowan Geng;Keqing Lin;Qing Zhang;Yuan Jin;Yuqian Zhai;Xiaoyu Li;Jin Chen
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1013-1022
    • /
    • 2023
  • Arbuscular mycorrhizal fungi (AMF) are widespread soil endophytic fungi, forming mutualistic relationships with the vast majority of land plants. Biochar (BC) has been reported to improve soil fertility and promote plant growth. However, limited studies are available concerning the combined effects of AMF and BC on soil community structure and plant growth. In this work, a pot experiment was designed to investigate the effects of AMF and BC on the rhizosphere microbial community of Allium fistulosum L. Using Illumina high-throughput sequencing, we showed that inoculation of AMF and BC had a significant impact on soil microbial community composition, diversity, and versatility. Increases were observed in both plant growth (the plant height by 8.6%, shoot fresh weight by 12.1%) and root morphological traits (average diameter by 20.5%). The phylogenetic tree also showed differences in the fungal community composition in A. fistulosum. In addition, Linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed that 16 biomarkers were detected in the control (CK) and AMF treatment, while only 3 were detected in the AMF + BC treatment. Molecular ecological network analysis showed that the AMF + BC treatment group had a more complex network of fungal communities, as evidenced by higher average connectivity. The functional composition spectrum showed significant differences in the functional distribution of soil microbial communities among different fungal genera. The structural equation model (SEM) confirmed that AMF could improve the microbial multifunctionality by regulating the rhizosphere fungal diversity and soil properties. Our findings provide new information on the effects of AMF and biochar on plants and soil microbial communities.

Study of vascular hydrophyte vegetation and biomass in Bigumdo, Shinangun, Korea (신안군 비금도의 관속수생식물의 식생 및 생산량(Biomass)에 관한 연구)

  • Yang, Hyo-Sik
    • Journal of Wetlands Research
    • /
    • v.8 no.2
    • /
    • pp.65-74
    • /
    • 2006
  • A study of the vascular hydrophyte communities and biomass was undertaken in the Bigumdo wetlands, Shinangun, from March to November, 2005. As a result, the vegetation was divided into 14 communities. Among them, emergent hydrophytes consisted of 6 communities, including Miscanthus sacchariflorus community, Phragmites communis community, Typha angustata community, Leersia japonica community, Paspalum disticum var. indutum community, and Persicaria thunbergii community, floating hydrophytes 5 communities including Hydrocharis dubia community, Nelumbo nucifera community, Euryale ferox community, Trapa japonica community and Nymphaea tetragona var. angusta community, free-floating hydrophytes 2 commuinties including Lemna paucicostata community and Spirodela polyrhiza community, and submergent hydrophyte 1 community, including Myriophyllum verticillatum community. Biomass was the highest at emergent hydrophytes and decreased along the life form, in the order like floating hydrophytes, submergent hydrophyte and free-floating hydrophytes. In addition, hydrophytes in the Bigumdo wetland showed the typical vertical zonation pattern like a natural swamp. These results were considered that the wetland of Bigumdo was characterized by the typical structure of aquatic plant ecosystem.

  • PDF

Overview of Arabidopsis Resource Project in Japan

  • Kobayashi, Masatomo
    • Interdisciplinary Bio Central
    • /
    • v.3 no.1
    • /
    • pp.2.1-2.4
    • /
    • 2011
  • Arabidopsis is well-known to the world's plant research community as a model plant. Many significant resources and innovative research tools, as well as large bodies of genomic information, have been created and shared by the research community, partly explaining why so many researchers use this small plant for their research. The genome sequence of Arabidopsis was fully characterized by the end of the $20^{th}$ century. Soon afterwards, the Arabidopsis research community began a 10-year international project on the functional genomics of the species. In 2001, at the beginning of the project, the RIKEN BioResource Center (BRC) started its Arabidopsis resource project. The following year, the National BioResource Project was launched, funded by the Japanese government, and the RIKEN BRC was chosen as a core facility for Arabidopsis resource. Seeds of RIKEN Arabidopsis transposon-tagged mutant lines, activation-tagged lines, full-length cDNA over-expresser lines, and natural accessions, as well as RIKEN Arabidopsis full-length cDNA clones and T87 cells, are preserved at RIKEN BRC and distributed around the world. The major resources provided to the research community have been full-length cDNA clones and insertion mutants that are suitable for use in reverse-genetics studies. This paper provides an overview of the Arabidopsis resources made available by RIKEN BRC and examples of research that has been done by users and developers of these resources.