• Title/Summary/Keyword: plant cell suspension culture

Search Result 191, Processing Time 0.02 seconds

Improvement of Peroxidase Productivity by Optimization of Medium Composition and Cell Inoculum Size in Suspension Cultures of Sweet Potato (Ipomoea batatas) (고구마(Ipomoea batatase)현탁배양에서 배지조성 및 세포접종량의 적정화에 의한 Pemxidase생산성 향상)

  • 곽상수;김수경;정경희;유순희;박일현;유장렬
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.2
    • /
    • pp.91-97
    • /
    • 1994
  • To improve the productivity of peroxidase (POD) of cell line SP-47 derived from cell suspension cultures of sweet potato (Ipomoea batatas (L) Lam.cv White Star), we optimized culture conditions including the composition and concentration of plant growth regulators and carbon source, and the cell inoculum size. When one g (fr wt) of cells was inoculated into 50 mL TL medium supplemented with l mg/L 2,4-D and 30g/L sucrose in 300 mL Erlenmeyer flask at 25$^{\circ}C$ in the dark (100rpm), the POD activity per g cell dry wt was maximized to be about 6,800 units after 25 days of subculture, which was about 30 times higher than that of intact roots of horseradish plants grown in the greenhouse, but the cell growth was maximum after 15 days of subculture. The protein content per g cell dry wt maintained almost plateau and after 25 days of subculture decreased as culture Proceeded further whereas the POD specific activity (unit/mg protein) was about two times higher after subculture and continuously increased from 12 days to the end of cultures (40 days). The POD isozyme patterns showed almost the same regardless of cell growth stage, but some acidic isozymes were slightly increased after 25 days of subculture. These results indicate that POD activity in suspension cultures of sweet potato is closely associated with cell growth and stresses derived from cell culture renditions and medium depletion. Due to its high POD activity the SPL47cell line seems to be suitable for the mass production of POD.

  • PDF

Production Enhancement of Menthol in Suspension Cultures of Peppermint Using Cyclodextrin (Peppermint 세포 현탁배양에서 Cyclodextrin을 이용한 Menthol의 생산성 증대)

  • 조규헌;임철호;박세춘;신명근
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.26-30
    • /
    • 1998
  • The suspension cultures of Mentha piperita produce menthol which has very low solubility in water due to its hydrophobicity. This can be considered as a factor for its low production in the suspension suspension cultures. Cyclodextrin has the hydrophobic cavity inside the molecule in which menthol can be captured and allow to form a stable complex. The suspension culture of Mentha piperita showed 70% higher production enhancement in the medium containing 1.5%(w/v) $\beta$-cyclodextrin than the control. $\beta$-cyclodextrin had no adverse effect on the cell growth and showed the best result among $\alpha$-, $\beta$- and $\gamma$-cyclodextrins tested in terms of menthol production. We demonstrated that $\beta$-cyclodextrin can be used to enhance the production of menthol in the suspension cultures by capturing hydrophobic menthol into the cavity of cyclodextrin molecules.

  • PDF

Production of Rosmarinic Acid, Lithospermic Acid B, and Tanshinones by Suspension Cultures of Ti-Transformed Salvia miltiorrhiza Cells in Bioreactors

  • Zhong, Jian-Jiang;Hui Chen;Feng Chen
    • Journal of Plant Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.107-112
    • /
    • 2001
  • The kinetics of Ti-transformed Salvia miltiorrhiza cell cultures was studied in 250-$m\ell$ shake flasks by using B5 medium with addition of 30 gfL of sucrose. In the cell cultures, the maximum cell mass obtained was 11.5 g DW/L on day 15. The highest amount of phenolic compounds - rosmarinic acid (RA) and lithospermic acid B (LAB) reached 871.3 mg/L (day 15) and 121.3 mg/L (day 13), respectively. The total tanshinone production, i.e., intracellular plus extracellular cryptotanshinone, tanshinone 1, and tanshinone IIA, was 5.3 mg/L on day 13. For the cultivations in 2.4-L stirred bioreactors, the residual sugar level and medium conductivity were a little higher in a small turbine impeller reactor ($T_s$) than those in a large turbine impeller reactor ($T_L$), while a higher cell density was obtained in the $T_L$. For the production of tanshinones and phenolics, better results were obtained in the $T_L$ than in the $T_s$. In the $T_L$, similar or even a little higher production titers of tanshinones and phenolic compounds were achieved compared to those in the flasks. The results suggest that the shake flask results could be successfully scaled up to the $T_L$ reactor. Such a large impeller reactor like $T_L$ may be better than a small impeller one for the large-scale production of the valuable metabolites by the suspension cultures of Ti transformed S.miltiorrhiza cells. This is considered due to the beneficial culture environment in the $T_L$, such as low shear rates as estimated theoretically.

  • PDF

Somatic Embryogenesis and Plant Regeneration in Embryogenic Cell Suspension Cultures of Hovenia dulcis Thunb (헛개나무의 현탁배양세포로부터 체세포배발생과 식물체 재생)

  • Li, Cheng-Hao;Zhao, Bo;Kim, Na-Young;Kim, Myong-Jo;Cho, Dong-Ha;Lee, Dong-Wook;Lee, Jae-Geun;Lim, Jung-Dae;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.4
    • /
    • pp.255-260
    • /
    • 2006
  • Culture conditions for high frequency plant regeneration via somatic embryogenesis from embryogenic cell suspension cultures of Hovenia dulcis are described. Germinated somatic embryos were selected for induction of secondary embryogenesis. Friable embryogenic cells were induced directly from somatic embryos when transfer to 1/3 MS solid or liquid medium lacking plant growth regulators. The temperature strongly effected on induction of secondary embryognesis than other conditions in culture. All somatic embryos produced friable embryogenic cell clumps within 10 days when germinated somatic embryos cultured in 1/3 MS medium at $30^{\circ}C$ in suspension culture. No somatic embryos formed from embryogenic cell suspension cultures at $18^{\circ}C$. Numerous somatic embryos were induced and subsequently developed uniformly into germination stage from suspended cell clumps after 4 weeks of culture on $18^{\circ}C$. Plantlets conversion were observed on $18^{\circ}C$ when germinated somatic embryos were transferred to 1/3 MS solid medium without plant growth regulators or supplemented with 0.1-0.5 mg/l benzyladenine.

Effects of Phosphate, Precursor and Exogenous Berberine on the Production of Alkaloid in Plant Cell Cultures

  • Kim, Dong-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.79-83
    • /
    • 1991
  • The effects of phosphate concentration in the medium, feeding of biosynthetic precursor, and the addition of exogenous berberine on cell growth and berberine production were studied in cell suspension cultures of Thalictrum rugosum. The depletion of phosphate in the medium enhanced the specific productivity up to twofold with significant release of berberine into the medium. Extracellular berberine was 19% of the total in the culture without phosphate while it was 2-5% of total berberine in the culture with even low amounts of phosphate. Precursor feeding was not effective in enhancing alkaloid formation. Initial presence of exogenous berberine did not have much effect on cell growth and alkaloid production. It was found that the cells have the capacity to take up large quantities of berberine. When $500{\;}mg{\cdot}l^{-1}$ of berberine was added exogenously at the beginning, 81% of total berberine was found in the cells.

  • PDF

Partitioning of Recombinant Human Granulocyte-Macrophage Colony Stimulating Factor (hGM-CSF) from Plant Cell Suspension Culture in PEG/Sodium Phosphate Aqueous Two-phase Systems

  • Lee, Jae-Hwa;Loc, Nguyen-Hoang;Kwon, Tae-Ho;Yang, Moon-Sik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.1
    • /
    • pp.12-16
    • /
    • 2004
  • Partitioning of human granulocyte-macrophage colony stimulating factor (hGM-CSF) was achieved in the aqueous two-phase systems (ATPSs) using a crude extract of transgenic tobacco cell suspension culture. This study examined the effects of polyethylene glycol (PEG) molecular weight and concentration and the effects of sodium phosphate concentration in different PEG/sodium phosphate systems on the partition coefficient, K. The best ATPS system was 5% PEG 8,000/1.6 M sodium phosphate after 2 h of incubation at room temperature. In this system, hGM-CSF was partitioned in the PEG-rich phase with a yield of 57.99% and K$\_$hGM-CSF/ of 8.12. In another system, 3% PEG 10,000/1.6 M sodium phosphate, hGM-CSF was also partitioned primarily in the top phase with a yield of 45.66% and K$\_$hGM-CSF/ of 7.64 after 2 h of incubation at room temperature.

Enhancement of eurycomanone biosynthesis in cell culture of longjack (Eurycoma longifolia) by elicitor treatment

  • Nhan, Nguyen Huu;Loc, Nguyen Hoang
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.340-346
    • /
    • 2018
  • In this study, the effect of elicitors such as yeast extract (YE), methyl jasmonate (MeJA) and salicylic acid (SA) on the accumulation of eurycomanone in Eurycoma longifolia cell cultures were investigated. Suspension cells of E. longifolia was cultured in Murashige and Skoog (MS) medium supplemented with 30 g/L sucrose, 1.25 mg/L naphthaleneacetic acid (NAA) and 1 mg/L kinetin at a shaking speed of 120 rpm. Elicitors were added in the culture at different concentrations and times to stimulate eurycomanone accumulation in the Eurycoma longifolia cells. Eurycomanone content was determined by HPLC with a C18 column, flow rate of 0.8 mL/min, run time of 17.5 min, and a detector wavelength of 254 nm. The stationary phase was silica gel and the mobile phase was acetonitrile: $H_2O$. Non-elicited cells were used as the control. The study showed the effect of different elicitor concentrations, YE at 200 mg/L, MeJA at $20{\mu}M$ and SA at $20{\mu}M$ stimulated high production of eurycomanone. In which, treatment of $20{\mu}M$ MeJA after 4 days of culture resulted in the highest accumulation of this compound (17.36 mg/g dry weight), approximately 10-fold higher than that of untreated cells (1.70 mg/g dry weight).

Effect of Sugar Starvation on the Sugar Transport System in Suspension Cultures of Streptanthus trotus (Streptanthus tortus 배양 세포에서 당류고갈이 당류 수송계에 미치는 영향)

  • 조봉희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.1
    • /
    • pp.47-50
    • /
    • 2000
  • In suspension cultures of Streptanthus. the uptake rate of sugar was increased during the ceil starvation of sugar in the medium. The maximal uptake rate obtained with 3 days of cell starvation. Sugar transport system induced by the sugar starvation was completely inhibited by 10 $\mu$M cycloheximide. Plant cells are known to possess only one sugar transport system, but the uptake rate of glucose obtained a saturated kinetic while the one of sucrose had two different kinetics after the sugar starvation. Induced sugar transport systems had different kinetics compared to plant cell. These results showed that higher plants have adaptable ability to induce new sugar transport systems when the environment changed unsuitable.

  • PDF

Production of ${\gamma}$-Linolenic Acid by Cell Suspension Cultures of Lithospermum erythrorhizon (지치세포 배양에 의한 ${\gamma}$-Linolenic Acid 생산)

  • 김용환;김정봉;류태훈;이철희;황영수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.2
    • /
    • pp.111-114
    • /
    • 1995
  • To produce ${\gamma}$-linolenic acid (GLA) by cell cultures of Lithospermum erythrorhizon, we optimized medium compositions including carbon sources, nitrogen sources and growth regulators. MS basal medium supplemented with 1.0 mg/L 2, 4-D was effective for callus induction from mesophyll tissue. Addition of sucrose at 88mM concentration induced active proliferation of suspension cells and increased GLA content. Increased supplement of potassium nitrate as nitrogen source resulted in proliferous cell growth and increased total fatty acid content Abscisic acid increased cell growth and fatty acid content in callus culture, whereas as it had an inhibitory effect in suspension cell culture.

  • PDF

High Frequency Plant Regeneration in Embryogenic Cell Suspension Cultures of Cucumber (오이 배발생세포의 현탁배양을 통한 고빈도 식물체 재분화)

  • 정원중;우제욱;박효근;최관삼;유장렬
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.4
    • /
    • pp.289-291
    • /
    • 1999
  • Hypocotyl explants from 7 days old seedlings of one $F_1$ hybrid cultivar and two pure lines of cucumber formed embryogenic calli at frequencies of up to 8% when cultured on Murashige and Skoog medium (MS) supplemented with 1 mg/L 2,4-D for 3 weeks. Embryogenic calli gave rise to somatic embryos. When slices of somatic embryos were cultured on the same medium for 4 weeks, they formed embryogenic calli. Embryogenic cell suspension cultures were established with embryogenic calli in MS liquid medium with 1 mg/L 2,4-D. Embryogenic potential of cell suspension cultures was maintained by subculturing every seven days. When the level of 2,4-D in the medium was lowered to 0.2 mg/L by diluting with liquid MS basal medium, embryogenic cell suspension cultures underwent development into numerous somatic embryos. When plated onto MS basal medium, over 95% of somatic embryos developed into plantlets. Plantlets were transplanted to potting soil and grown to maturity.

  • PDF