• Title/Summary/Keyword: plant calluses

Search Result 49, Processing Time 0.032 seconds

GUS Expression by CaMV 35S and Rice Act1 Promoters in Transgenic Rice

  • Kwang-Woong Lee
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.371-380
    • /
    • 1994
  • To determine the patterns and the levels of expression of the cauliflower mosaic virus (CaMV 35S) promoter and the rice actin 1 (Act1) promoter in rice, transgenic rice plants containing CaMV 35S-$\beta$-glucuronidase (GUS) and Act1-GUS constructs were generated and examined by fluorometric and histochemical analyses. The fluorometric analysis of stably transformed calluses showed that the activity of the rice Act1 promoter was stronger than that of the CaMV 35S promoter in rice cells. In a histochemcial study of the transgenic rices, it was shown that the GUS activity directed by the CaMV 35S promoter was localized mainly in parenchymal cells of vascular tissues of leaves and roots and mesophyll cells of leaves. These results are similar to those of potato, a dicot plant. In contrast, rice plant transformed with Act1-GUS fusion construct revealed strong GUS activity in parenchymal cells of vascular tissue, mesophyll cells, epidermal cells, bulliform cells, guard subsidiary cells of leaves and most cells of the root, suggesting that the rice Act1 promoter is more constitutive than the CaMV 35S promoter. It was also confirmed that in both types of transgenic rice little or no staining was localized in metaxylen tracheary elements of vascular tissue from leaves or roots. These results indicate that the rice Act1 promoter can be utilized more successfully for expression of a variety of foreign gene in rice than the CaMV 35S promoter.

  • PDF

Herbicide Resistant Cabbage (Brassica oleracea ssp. capitata) Plants by Agrobacterium-mediated Transformation

  • Lee, Yeon-Hee;Lee, Seung-Bum;Suh, Suk-Chul;Byun, Myung-Ok;Kim, Ho-Il
    • Journal of Plant Biotechnology
    • /
    • v.2 no.1
    • /
    • pp.35-41
    • /
    • 2000
  • Transgenic cabbage (Brassica oleracea ssp. capitata) plants resistant to the commercial herbicide Bast $a^{R}$ were obtained by Agrobacterium tumefaciens - mediated transformation. Hypocotyl segments of in vitro grown plants were infected with Agrobacterium tumefaciens LBA 4404 harboring plasmid pMOG6-Bar which contains hpt and bar genes. Explants were cultured on callus induction medium (MS basal medium + 1 mg/L NAA + 2 mg/L BA + 2 mg/L AgN $O_3$+ 100 mg/L carbenicillin + 250 mg/L cefotaxime) supplemented with 15 mg/L hygromycin. Hygromycin resistant calluses were transferred to shoot regeneration medium (MS basal medium + 0.1 mg/L NAA + 2 mg/L BA + 3% sucrose + 2 mg/L AgN $O_3$+ 15 mg/L hygromycin + 250 mg/L cefotaxime + 100 mg/L carbenicillin). In order to induce roots, elongated shoots were placed on the MS medium without plant growth regulators and hygromycin. Southern blot analysis of several putative transgenic plants indicated that one to five intact copies of Apt and bar genes were incorporated into the genome. Expression of bar gene was confirmed by Northern blot analysis and by herbicide resistant phenotype. Seed progeny from self-pollinated transformants expressed the herbicide resistance and showed Mendelian segregation of the introduced gene.e.

  • PDF

Efficacy of callus induced from Ullengdo niche plants for skin protection (식물세포배양기술을 이용한 울릉도 자생식물의 세포주 개발 및 피부세포 효능)

  • Choi, Yun Hui;Jung, Hae Soo;Cho, Moon Jin;Song, Mi Young;Seo, Hyo Hyun;Moh, Sang Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5070-5077
    • /
    • 2014
  • Many countries in the world have protected their native plants and utilized them as industrial materials in each country. In this aspect, it is increasingly important to develop cosmetics materials using native plants in Korea. Cosmetic materials have been developed with niche plants, such as Campanula takesimana Nakai, Dianthus superbus, Aster spathulifolius in Ullengdo, in which a specific plant distribution by distinct climate and environment was present. Water and ethanol extractions were performed from the calluses of Campanula takesimana Nakai, Dianthus superbus, Aster spathulifolius. HPLC analysis revealed different compositions and functions of effective elements in each ethanol extract. For example, all types of ethanol extracts showed an ability to heal wounds. In particular, the expression of the inflammation-related gene, COX-2, was decreased in response to the ethanol extracts of Dianthus superbus. These results indicate that the ethanol extracts from niche plants' calluses in Ullengdo are natural and environmentally-friendly compounds, and can be used as medical supplies associated with anti-inflammation and wound healing.

High frequency plant proliferation via direct fronds regeneration of Korean endemic duckweed species (국내 자생 좀개구리밥 (Lemna paucicostata) 및 개구리밥(Spirodela polyrhiza)의 엽상체 증식을 통한 기내 식물체 대량 증식체계 확립)

  • Oh, Myung-Jin;Park, Jong-Mi;Ko, Suk-Min;Liu, Jang R.;Kim, Suk-Weon
    • Journal of Plant Biotechnology
    • /
    • v.36 no.2
    • /
    • pp.157-162
    • /
    • 2009
  • High frequency plant proliferation system via direct frond regeneration of endemic duckweed plants Lemna paucicostata and Spirodela polyrhiza was established. Fronds of L. paucicostata and S. polyrhiza were able to multiply half-strength MS basal medium without plant growth regulators. However, addition of BA at a range of 1 to 3 mg/L was more effective than high concentration of BA treatments for fronds proliferation. Also half-strength MS salts was suitable for the fronds proliferation. Increase of salts concentration had inhibitory effect on fronds proliferation. Also the frequency of callus formation from fronds of L. paucicostata was 3.3%, when they cultured onto 1/2 MS medium supplemented with 1 mg/L of BA. Similarly the frequency of callus formation from S. polyrhiza was very low. After subculture of white globular structures derived from fronds of L. paucicostata, numerous globular somatic embryos and calluses were developed onto the surface of fronds. However these somatic embryos did not fully develop into normal plants when transferred to 1/2 MS basal medium. Therefore direct frond regeneration system was more efficient for mass proliferation of L. paucicostata and S. polyrhiza. The plant regeneration system of L. paucicostata and S. polyrhiza established in this study, might be applied to mass proliferation and genetic transformation for molecular breeding.

Plant Regeneration Capacity of Calluses Derived from Mature Seed of Perennial Ryegrass Cultivars (페레니얼 라이그라스의 품종에 따른 성숙종자 유래의 캘러스로부터 식물체 재분화)

  • Lee, Ki-Won;Lee, Joung-Kyong;Kim, Ki-Yong;Ji, Hee-Chung;Park, Hyung-Soo;Kim, Kyung-Hee;Lee, Byung-Hyun;Lee, Sang-Hoon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.29 no.4
    • /
    • pp.285-290
    • /
    • 2009
  • A suitable system for plant regeneration has been established for perennial ryegrass (Lolium perenne L.). In order to investigate the effects of genetic variations of perennial ryegrass in tissue culture response, calli were induced from mature seeds of five cultivars, 'Topgun', 'Accent', 'Renenge GLX', 'Tetrellite', 'Bison' and plant regeneration frequency was compared. Significant differences were observed among the cultivars in both callus induction and plant regeneration. Genotype 'Accent' consistently performed best in the callus formation and plant regeneration. These results can be used useful for molecular breeding of perennial ryegrass through genetic transformation.

Origin of Callus and Vascular Cambium in Debarked Stem of Robinia pseudoacacia

  • Soh, Woong-Young
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.317-323
    • /
    • 1994
  • The calluses formed on the surface of a quarter-girdled Robinia pseudoacacia stems have been shown to originate from immature xylem cells and preexisting cambial cells. The cellus is not only formed by periclinal and anticlinal divisions of radial cells, but also axial cells. In tangential view, the callus at initial stage showed heterogeneous structure composed of long and short cells and then homogeneous one with short cells. Some cells of homogeneous structure in middle region of callus at early stage is later elongated and others mainly divided in trasverse plane. In the result the homogeneous structure becomes into a heterogeneous one. Subsequently, the long cells in heterogeneous structures elongated further and became fusifrom initials, and the short cells divided transversely became ray initials. The appearence of homogeneous and heterogeneous structure in the callus on debarked stem without organ elongation is almost similar to that of the structure in the procambium of young stem which is elongating extensively. Eventually, the ontogeny of vascular cambium in wound callus resembles that of a young stem grown normally, although the debarked stem does not grow in length but in girth and the young stem elongates activity. These findings mean that the active intrusive growth of short procambial cells occurs during the differentiation of fusiform cambial cells.

  • PDF

Biological activities of Brassica rapa (Turnip) callus extracts by plant cell culture technology (식물세포배양기술을 이용한 순무 캘러스 추출물의 생리활성)

  • Shin, Su Young;Moh, Sang Hyun;Hwang, You Jin
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.248-254
    • /
    • 2016
  • The purpose of this study was to investigate biological activities of Brassica rapa (Turnip) plant callus extracts of Ganghwa-gun of Incheon city using water, ultrasonic wave and ethanol extractions to develop functional materials. DPPH radical scavenging activities of the callus extracts were increased in a concentration-dependent manner, as compared with control. The astringent effects of the ethanol extracts were higher, as compared to water and ultrasonic extracts. In the collagen synthesis assay, the ethanol extract showed significant anti-wrinkle effects of 59% and 78% at a concentration of 5 ppm and 10 ppm, respectively. These results suggested that water, ultrasonic wave and ethanol extracts of turnip plant calluses are natural antioxidant sources. Especially, the ethanol extract can be regarded as a functional, natural cosmetic material with astringent and anti-wrinkle effects.

Acquirement of transgenic rose plants from embryogenic calluses via Agrobacterium tumefaciens (배발생 캘러스를 이용한 아그로박테리움 매개형질전환 장미 식물체 획득)

  • Lee, Su-Young;Lee, Jung-Lim;Kim, Won-Hee;Kim, Seung-Tae;Lee, Eun-Kyung
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.511-516
    • /
    • 2010
  • The process to acquire intron-GUS gene-expressed transformants from somatic embryos (including embryogenic calli) of Rosa hybrida cv. 'Sweet Yellow' using Agrobacterium-meditated transformation method was reported in this study. Somatic embryos including embryogenic calluses were infected with Agrobacterium tumefaciens AGL1 strain (O.D = 0.7~1.6) including intron-GUS gene for 30 min, and were co-cultured for 3 days. After co-cultivation, they were cultured on embryo germination medium (EGM) supplemented with $250\;mg{\cdot}L^{-1}$ cefotaxim at $4^{\circ}C$ for 7 days. Then, transient GUS gene expression was observed. Shoots were regenerated from the shoot primodia induced from the intron-GUS gene-transferred either somatic embryos or embryogenic calli cultured on EGM supplemented with both cefotaxim $250\;mg{\cdot}L^{-1}$ and ppt $2\;mg{\cdot}L^{-1}$. Before induction of rooting from shoots cultured on shoot growing medium supplemented with both cefotaxim $250\;mg{\cdot}L^{-1}$ and ppt $2\;mg{\cdot}L^{-1}$, the shoots were cultured on multi-shoot induction medium supplemented with both cefotaxim $250\;mg{\cdot}L^{-1}$ and ppt $2\;mg{\cdot}L^{-1}$ to induce multi-shoots. When expression of the gene from a part of the multi-shoots was identified by GUS transient assay, the putative transgenic multishoots were transferred to rooting medium supplemented with cefotaxim $250\;mg{\cdot}L^{-1}$. After the formation of healthy roots, transgenic plantlets were transferred to the greenhouse after acclimatization. The expression rate of the intron-GUS gene in the multi-shoots was 100%.

In vitro seed germination and callus formation on flower bud of Korean mistletoe ( Viscum album L. var. cololatum [Kom.] Ohwi) (겨우살이 종자 발아 및 화아 배양에 의한 캘러스 형성)

  • Kim, Suk-Weon;Ko, Suk-Min;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.47-53
    • /
    • 2008
  • Effects of growth regulators and culture conditions on seed germination, haustorium development, and callus formation of Korean mistletoe (Viscum album var. coloratum (Kom.) Ohwi) were described. Histological examination showed that seed of V. album contained one or two zygotic embryos with rod shape, and actively dividing cells were mainly distributed in radicle region rather than cotyledon of zygotic embryo. The most significant factor for seed germination and haustorium development of V. album was the requirement of the light. Various growth regulators examined in this study failed to substitute the effect of the light on seed germination. The frequency of callus formation was highest at 27.3% when flower buds were cultured onto B5 medium containing $0.1\;mgl^{-1}$ IAA. Explants from other organs were recalcitrant in forming calluses. Culture conditions described in this study could be applied for production of useful metabolites and multiplication of V. album in future.

High-frequency shoot regeneration from leaf explants through organogenesis in bitter melon (Momordica charantia L.)

  • Thiruvengadam, Muthu;Rekha, K.T.;Yang, Chang-Hsien;Jayabalan, Narayanasamypillai;Chung, Ill-Min
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.321-328
    • /
    • 2010
  • An efficient protocol for in vitro organogenesis was achieved from callus-derived immature and mature leaf explants of Momordica charantia, a very important vegetable and medicinal plant. Calluses were induced from immature leaf explants excised from in vitro (15-day-old seedlings) mature leaf explants of vivo plants (45 days old). The explants were grown on Murashige and Skoog (MS) medium with Gamborg (B5) vitamins containing 30 g $1^{-1}$ sucrose, 2.2 g $1^{-1}$ Gelrite, and 7.7 lM naphthalene acetic acid (NAA) with 2.2 ${\mu}M$ thidiazuron (TDZ). Regeneration of adventitious shoots from callus (30-40 shoots per explant) was achieved on MS medium containing 5.5 ${\mu}M$ TDZ, 2.2 ${\mu}M$ NAA, and 3.3 ${\mu}M$ silver nitrate ($AgNO_3$). The shoots (1.0 cm length) were excised from callus and elongated in MS medium fortified with 3.5 ${\mu}M$ gibberellic acid ($GA_3$). The elongated shoots were rooted in MS medium supplemented with 4.0 ${\mu}M$ indole 3-butyric acid (IBA). Rooted plants were acclimatized in the greenhouse and subsequently established in soil with a survival rate of 90%. This protocol yielded an average of 40 plants per leaf explant with a culture period of 98 days.