• 제목/요약/키워드: plant biocontrol

검색결과 412건 처리시간 0.024초

Rhizospheric-Derived Nocardiopsis alba BH35 as an Effective Biocontrol Agent Actinobacterium with Antifungal and Plant Growth-Promoting Effects: In Vitro Studies

  • Mohamed H. El-Sayed;Abd El-Nasser A. Kobisi;Islam A. Elsehemy;Mohamed A. El-Sakhawy
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권5호
    • /
    • pp.607-620
    • /
    • 2023
  • The biocontrol approach using beneficial microorganisms to control crop diseases is becoming an essential alternative to chemical fungicides. Therefore, new and efficient biocontrol agents (BCA) are needed. In this study, a rhizospheric actinomycete isolate showed unique and promising antagonistic activity against three of the most common phytopathogenic fungi, Fusarium oxysporum MH105, Rhizoctonia solani To18, and Alternaria brassicicola CBS107. Identification of the antagonistic strain, which was performed according to spore morphology and cell wall chemotype, suggested that it belongs to the Nocardiopsaceae. Furthermore, cultural, physiological, and biochemical characteristics, together with phylogenetic analysis of the 16S rRNA gene (OP869859.1), indicated the identity of this strain to Nocardiopsis alba. The cell-free filtrate (CFF) of the strain was evaluated for its antifungal potency, and the resultant inhibition zone diameters ranged from 17.0 ± 0.92 to 19.5 ± 0.28 mm for the tested fungal species. Additionally, the CFF was evaluated in vitro to control Fusarium wilt disease in Vicia faba using the spraying method under greenhouse conditions, and the results showed marked differences in virulence between the control and treatment plants, indicating the biocontrol efficacy of this actinomycete. A promising plant-growth promoting (PGP) ability in seed germination and seedling growth of V. faba was also recorded in vitro for the CFF, which displayed PGP traits of phosphate solubilization (48 mg/100 ml) as well as production of indole acetic acid (34 ㎍/ml) and ammonia (20 ㎍/ml). This study provided scientific validation that the new rhizobacterium Nocardiopsis alba strain BH35 could be further utilized in bioformulation and possesses biocontrol and plant growth-promoting capabilities.

Influence of Soil Microbial Biomass on Growth and Biocontrol Efficac of Trichoderma harzianum

  • Bae, Yeoung-Seuk;Guy R. Kundsen;Louise-Marie C. Dandurand
    • The Plant Pathology Journal
    • /
    • 제18권1호
    • /
    • pp.30-35
    • /
    • 2002
  • The hyphal growth and biocontrol efficacy of Trichodemo harzianum in soil may depend on its interactions with biotic components of the soil environment. The effect of soil microbial biomass on growth and biocontrol efficacy of T. hanianum isolate ThzIDl-M3 (green fluorescent protein transformant) was investigated using artificially prepared different levels of soil microbial biomass (153,328, or 517ug biomass carbon per g of dry soil; BC). The hyphal growth of T. harzanum was significantly inhibited in the soil with 328 or 517 $\mu$g BC compared with 153 ug BC. When ThzIDl-M3 was added to the soils as an alginate pellet formulation, the recoverable population of ThzIDl-M3 varied, but the highest population occurred in 517ug BC. Addition of alginate pellets of ThzIDl-M3 to the soils (10 per 50 g) resulted in increased indigenous microbial populations (total fungi, bacterial fluorescent Pseudomonas app., and actinomycetes). Furthermore, colonizing ability of ThzIDl-M3 on sclerotia of Sclerotinia sclerotiorum was significantly reduced in the soil with high revel of BC. These results suggest that increased soil microbial biomass contributes to increased interactions between introduced T. harzianum and soil microorganisms, consequently reducing the biocontrol efficacy of 1T. harzianum.

Biological Control Potential of Bacillus amyloliquefaciens KB3 Isolated from the Feces of Allomyrina dichotoma Larvae

  • Nam, Hyo-Song;Yang, Hyun-Ju;Oh, Byung Jun;Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • 제32권3호
    • /
    • pp.273-280
    • /
    • 2016
  • Most biocontrol agents for plant diseases have been isolated from sources such as soils and plants. As an alternative source, we examined the feces of tertiary larvae of the herbivorous rhino beetle, Allomyrina dichotoma for presence of biocontrol-active microbes. The initial screen was performed to detect antifungal activity against two common fungal plant pathogens. The strain with strongest antifungal activity was identified as Bacillus amyloliquefaciens KB3. The inhibitory activity of this strain correlated with lipopeptide productions, including iturin A and surfactin. Production of these surfactants in the KB3 isolate varied with the culture phase and growth medium used. In planta biocontrol activities of cell-free culture filtrates of KB3 were similar to those of the commercial biocontrol agent, B. subtilis QST-713. These results support the presence of microbes with the potential to inhibit fungal growth, such as plant pathogens, in diverse ecological niches.

Identification and Characterization of Novel Biocontrol Bacterial Strains

  • Lee, Seung Hwan;Kim, In Seon;Kim, Young Cheol
    • 식물병연구
    • /
    • 제20권3호
    • /
    • pp.182-188
    • /
    • 2014
  • Because bacterial isolates from only a few genera have been developed commercially as biopesticides, discovery and characterization of novel bacterial strains will be a key to market expansion. Our previous screen using plant bioassays identified 24 novel biocontrol isolates representing 12 different genera. In this study, we characterized the 3 isolates showing the best biocontrol activities. The isolates were Pantoea dispersa WCU35, Proteus myxofaciens WCU244, and Exiguobacterium acetylicum WCU292 based on 16S rRNA sequence analysis. The isolates showed differential production of extracellular enzymes, antimicrobial activity against various fungal or bacterial plant pathogens, and induced systemic resistance activity against tomato gray mold disease caused by Botrytis cinerea. E. acetylicum WCU292 lacked strong in vitro antimicrobial activity against plant pathogens, but induced systemic resistance against tomato gray mold disease. These results confirm that the trait of biological control is found in a wide variety of bacterial genera.

Draft Genome Sequence of a Chitinase-Producing Biocontrol Bacterium, Lysobacter antibioticus HS124

  • Gardener, Brian B. McSpadden;Kim, In Seon;Kim, Kil Yong;Kim, Young Cheol
    • 식물병연구
    • /
    • 제20권3호
    • /
    • pp.216-218
    • /
    • 2014
  • Lysobacter antibiocus HS124 is a chitinase-producing rhizobacterium with proven capacities to suppress plant diseases. Bacterial cultures of L. antibioticus HS124 showed strong biocontrol efficacies against various plant diseases compared to those of bacterial cultures of Bacillus subtilis QST713 which is an active ingredient of a commercial biopesticide, Serenade. Here, we report the draft genome sequence and automated annotation of strain HS124. This draft genome sequence indicates the novelty of L. antibiocus HS124 and a subset of gene functions that may be related to its biocontrol activities.

Biocontrol Activity of Volatile-Producing Bacillus megaterium and Pseudomonas protegens against Aspergillus flavus and Aflatoxin Production on Stored Rice Grains

  • Mannaa, Mohamed;Oh, Ji Yeon;Kim, Ki Deok
    • Mycobiology
    • /
    • 제45권3호
    • /
    • pp.213-219
    • /
    • 2017
  • In our previous study, three bacterial strains, Bacillus megaterium KU143, Microbacterium testaceum KU313, and Pseudomonas protegens AS15, were selected as effective biocontrol agents against Aspergillus flavus on stored rice grains. In this study, we evaluated the inhibitory effects of the volatiles produced by the strains on A. flavus growth and aflatoxin production on stored rice grains. The three strains significantly reduced mycelial growth of A. flavus in dual-culture assays compared with the negative control strain, Sphingomonas aquatilis KU408, and an untreated control. Of these tested strains, volatiles produced by B. megaterium KU143 and P. protegens AS15 markedly inhibited mycelial growth, sporulation, and conidial germination of A. flavus on agar medium and suppressed the fungal populations in rice grains. Moreover, volatiles produced by these two strains significantly reduced aflatoxin production in the rice grains by A. flavus. To our knowledge, this is the first report of the suppression of A. flavus aflatoxin production in rice grains using B. megaterium and P. protegens volatiles.

키틴분해세균의 현장 대량 배양방법을 이용한 효과적인 식물병의 생물적 방제 전략 (An Effective and Practical Strategy for Biocontrol of Plant Diseases Using On-Site Mass Cultivation of Chitin-Degrading Bacteria)

  • 김영철;강범용;김용환;박서기
    • 식물병연구
    • /
    • 제23권1호
    • /
    • pp.19-34
    • /
    • 2017
  • 유기농 및 지속 가능한 농산물에 대한 최근의 전 세계적인 수요는 농가 현장에서 사용 가능한 생물 농약의 개발 및 활용에 대한 요구가 증대되고 있다. 그러나 대부분의 생물학적 방제 방법은 실제 현장 조건에서 식물병 방제 스펙트럼이 제한적이고 효능이 높지 않다. 본 연구팀은 키틴분해 미생물과 키틴을 활용하여 적은 비용으로 방제효과가 우수한 키틴 기반 제형을 개발했다. 이 제형은 포장 조건에서 다양한 식물병을 성공적으로 방제하였다. 본 리뷰에서는 성공적인 포장 연구와 관련하여 이 제형에 함유되어 있는 키틴분해미생물들의 생태학적 측면과 생물적 방제 기작에 대해 기술하였다. 또한 현장에서 키틴분해미생물의 현장 대량 배양과 효과적인 생물학적 방제 방법을 사용하여 농민 친화적인 수단으로 확대 할 수 있는 생물적 방제 방법과 전략의 가능성에 대해 논의했다.

Evaluation of the Biocontrol Potential of Some Medicinal Plant Materials Alone and in Combination with Trichoderma harzianum Against Rhizoctonia solani AG 2-1

  • Lee, Hye-Min;Khan, Zakaullah;Kim, Sang-Gyu;Baek, Nam-In;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • 제27권1호
    • /
    • pp.68-77
    • /
    • 2011
  • Fifty five species of medicinal plant materials were tested for their antifungal activity in vitro against Rhizoctonia solani AG 2-1 and Trichoderma harzianum to select plant species that can be used to improve the biocontrol efficacy of T. harzianum. Six species were effective against R. solani AG 2-1 but were also antagonistic to T. harzianum, except for Cinnamomum loureirii stem bark (CSB). CSB inhibited mycelial growth of R. solani AG 2-1 by 73.7% but showed an inhibitory effect on mycelial growth of T. harzianum by only 2.2%. Scanning electron microscophs showed that the CSB treatment resulted in deformed R. solani AG 2-1 hyphal cells, and transmission electron microscophs revealed degenerated cell structures such as degenerated cytoplasm and disentangled cell wall and the accumulation of electron-dense inclusions (asterisks) in the CSB treatment. The biocontrol efficacy of radish damping-off increased greatly following the combined treatments of T. harzianum and CSB and the combined treatment increased efficacy from 6.4-23.1% to 37.1-87.3% compared with either treatment alone. CSB did not affect T. harzianum population growth, as it was almost the same in rice-bran peat medium (culture) amended with 0.1% and 1.0% CSB powder as in non-amended medium. The formulation of T. harzianum in rice-bran peat medium amended with CSB powder reduced the severity of radish damping-off by 80.6%, suggesting that T. harzianum and CSB can be formulated as a biocontrol product for the control of R. solani AG 2-1.

Biocontrol of Phytophthora Blight and Anthracnose in Pepper by Sequentially Selected Antagonistic Rhizobacteria against Phytophthora capsici

  • Sang, Mee Kyung;Shrestha, Anupama;Kim, Du-Yeon;Park, Kyungseok;Pak, Chun Ho;Kim, Ki Deok
    • The Plant Pathology Journal
    • /
    • 제29권2호
    • /
    • pp.154-167
    • /
    • 2013
  • We previously developed a sequential screening procedure to select antagonistic bacterial strains against Phytophthora capsici in pepper plants. In this study, we used a modified screening procedure to select effective biocontrol strains against P. capsici; we evaluated the effect of selected strains on Phytophthora blight and anthracnose occurrence and fruit yield in pepper plants under field and plastic house conditions from 2007 to 2009. We selected four potential biocontrol strains (Pseudomonas otitidis YJR27, P. putida YJR92, Tsukamurella tyrosinosolvens YJR102, and Novosphingobium capsulatum YJR107) among 239 bacterial strains. In the 3-year field tests, all the selected strains significantly (P < 0.05) reduced Phytophthora blight without influencing rhizosphere microbial populations; they showed similar or better levels of disease suppressions than in metalaxyl treatment in the 2007 and 2009 tests, but not in the 2008 test. In the 2-year plastic house tests, all the selected strains significantly (P < 0.05) reduced anthracnose incidence in at least one of the test years, but their biocontrol activities were variable. In addition, strains YJR27, YJR92, and YJR102, in certain harvests, increased pepper fruit numbers in field tests and red fruit weights in plastic house tests. Taken together, these results indicate that the screening procedure is rapid and reliable for the selection of potential biocontrol strains against P. capsici in pepper plants. In addition, these selected strains exhibited biocontrol activities against anthracnose, and some of the strains showed plant growth-promotion activities on pepper fruit.

Effect of Temperature and Relative Humidity on Growth of Aspergillus and Penicillium spp. and Biocontrol Activity of Pseudomonas protegens AS15 against Aflatoxigenic Aspergillus flavus in Stored Rice Grains

  • Mannaa, Mohamed;Kim, Ki Deok
    • Mycobiology
    • /
    • 제46권3호
    • /
    • pp.287-295
    • /
    • 2018
  • In this study, we evaluated the effect of different temperatures (10, 20, 30, and $40^{\circ}C$) and relative humidities (RHs; 12, 44, 76, and 98%) on populations of predominant grain fungi (Aspergillus candidus, Aspergillus flavus, Aspergillus fumigatus, Penicillium fellutanum, and Penicillium islandicum) and the biocontrol activity of Pseudomonas protegens AS15 against aflatoxigenic A. flavus KCCM 60330 in stored rice. Populations of all the tested fungi in inoculated rice grains were significantly enhanced by both increased temperature and RH. Multiple linear regression analysis revealed that one unit increase of temperature resulted in greater effects than that of RH on fungal populations. When rice grains were treated with P. protegens AS15 prior to inoculation with A. flavus KCCM 60330, fungal populations and aflatoxin production in the inoculated grains were significantly reduced compared with the grains untreated with strain AS15 regardless of temperature and RH (except 12% RH for fungal population). In addition, bacterial populations in grains were significantly enhanced with increasing temperature and RH, regardless of bacterial treatment. Higher bacterial populations were detected in biocontrol strain-treated grains than in untreated control grains. To our knowledge, this is the first report showing consistent biocontrol activity of P. protegens against A. flavus population and aflatoxin production in stored rice grains under various environmental conditions of temperature and RH.