• 제목/요약/키워드: plant bacterial pathogen

검색결과 287건 처리시간 0.022초

Isolation of Nine Bacteriophages Shown Effective against Erwinia amylovora in Korea

  • Park, Jungkum;Kim, Byeori;Song, Sujin;Lee, Yong Whan;Roh, Eunjung
    • The Plant Pathology Journal
    • /
    • 제38권3호
    • /
    • pp.248-253
    • /
    • 2022
  • Erwinia amylovora is a devastating bacterial plant pathogen that infects Rosaceae including apple and pear and causes fire blight. Bacteriophages have been considered as a biological control agent for preventing bacterial infections of plants. In this study, nine bacteriophages (ΦFifi011, ΦFifi044, ΦFifi051, ΦFifi067, ΦFifi106, ΦFifi287, ΦFifi318, ΦFifi450, and ΦFifi451) were isolated from soil and water samples in seven orchards with fire blight in Korea. The genetic diversity of bacteriophage isolates was confirmed through restriction fragment length polymorphism pattern analysis. Host range of the nine phages was tested against 45 E. amylovora strains and 14 E. pyrifoliae strains and nine other bacterial strains. Among the nine phages, ΦFifi044 and ΦFifi451 infected and lysed E. amylovora only. And the remaining seven phages infected both E. amylovora and E. pyrifoliae. The results suggest that the isolated phages were different from each other and effective to control E. amylovora, providing a basis to develop biological agents and utilizing phage cocktails.

Microbiome Analysis Revealed Acholeplasma as a Possible Factor Influencing the Susceptibility to Bacterial Leaf Blight Disease of Two Domestic Rice Cultivars in Vietnam

  • Thu Thi Hieu Nguyen;Cristina Bez;Iris Bertani;Minh Hong Nguyen;Thao Kim Nu Nguyen;Vittorio Venturi;Hang Thuy Dinh
    • The Plant Pathology Journal
    • /
    • 제40권2호
    • /
    • pp.225-232
    • /
    • 2024
  • The microbiomes of two important rice cultivars in Vietnam which differ by their susceptibility to the bacterial leaf blight (BLB) disease were analyzed through 16S rRNA amplicon technology. A higher number of operational taxonomic units and alpha-diversity indices were shown in the BLB-resistant LA cultivar than in the BLB-susceptible TB cultivar. The BLB pathogen Xanthomonas was scantly found (0.003%) in the LA cultivar, whereas was in a significantly higher ratio in the TB cultivar (1.82%), reflecting the susceptibility to BLB of these cultivars. Of special interest was the genus Acholeplasma presented in the BLB-resistant LA cultivar at a high relative abundance (22.32%), however, was minor in the BLB-sensitive TB cultivar (0.09%), raising a question about its roles in controlling the Xanthomonas low in the LA cultivar. It is proposed that Acholeplasma once entered the host plant would hamper other phytopathogens, i.e. Xanthomonas, by yet unknown mechanisms, of which the triggering of the host plants to produce secondary metabolites against pathogens could be a testable hypothesis.

Characterization of the rcsA Gene from Pantoea sp. Strain PPE7 and Its Influence on Extracellular Polysaccharide Production and Virulence on Pleurotus eryngii

  • Kim, Min Keun;Lee, Sun Mi;Seuk, Su Won;Ryu, Jae San;Kim, Hee Dae;Kwon, Jin Hyeuk;Choi, Yong Jo;Yun, Han Dae
    • The Plant Pathology Journal
    • /
    • 제33권3호
    • /
    • pp.276-287
    • /
    • 2017
  • RcsA is a positive activator of extracellular polysaccharide (EPS) synthesis in the Enterobacteriaceae. The rcsA gene of the soft rot pathogen Pantoea sp. strain PPE7 in Pleurotus eryngii was cloned by PCR amplification, and its role in EPS synthesis and virulence was investigated. The RcsA protein contains 3 highly conserved domains, and the C-terminal end of the open reading frame shared significant amino acid homology to the helix-turn-helix DNA binding motif of bacterial activator proteins. The inactivation of rcsA by insertional mutagenesis created mutants that had decreased production of EPS compared to the wild-type strain and abolished the virulence of Pantoea sp. strain PPE7 in P. eryngii. The Pantoea sp. strain PPE7 rcsA gene was shown to strongly affect the formation of the disease symptoms of a mushroom pathogen and to act as the virulence factor to cause soft rot disease in P. eryngii.

Biocontrol of Late Blight and Plant Growth Promotion in Tomato Using Rhizobacterial Isolates

  • Lamsal, Kabir;Kim, Sang Woo;Kim, Yun Seok;Lee, Youn Su
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권7호
    • /
    • pp.897-904
    • /
    • 2013
  • Seven bacterial isolates (viz., AB05, AB10, AB11, AB12, AB14, AB15, and AB17) were derived from the rhizosphere and evaluated in terms of plant growth-promoting activities and the inhibition of Phytophthora infestans affecting tomatoes in Korea. According to 16S rDNA sequencing, a majority of the isolates are members of Bacillus, and a single isolate belongs to Paenibacillus. All seven isolates inhibited P. infestans by more than 60% in vitro. However, AB15 was the most effective, inhibiting mycelial growth of the pathogen by more than 80% in vitro and suppressing disease by 74% compared with control plants under greenhouse conditions. In a PGPR assay, all of the bacterial isolates were capable of enhancing different growth parameters (shoot/root length, fresh biomass, dry matter, and chlorophyll content) in comparison with non-inoculated control plants. AB17-treated plants in particular showed the highest enhancement in fresh biomass with 18% and 26% increments in the root and shoot biomass, respectively. However, isolate AB10 showed the highest shoot and root growth with 18% and 26% increments, respectively. Moreover, the total chlorophyll content was 14%~19% higher in treated plants.

Erwinia pyrifoliae, a Causal Endemic Pathogen of Shoot Blight of Asian Pear Tree in Korea

  • Shrestha, Rosemary;Koo, Jun-Hak;Park, Duck-Hwan;Hwang, In-Gyu;Hur, Jang-Hyun;Lim, Chun-Keun
    • The Plant Pathology Journal
    • /
    • 제19권6호
    • /
    • pp.294-300
    • /
    • 2003
  • Bacterial strains were isolated from diseased samples of shoot blight collected from different pear growing orchards of Chuncheon, Korea from 1995 to 1998. Forty-nine strains showed their pathogenicity on immature fruit and shoot of pear. Microbiological, physiological, and biochemical tests were performed on these pathogenic strains. One strain, designated as WT3 in this study, was selected as a representative strain as it was collected from the first outbreak area in Jichonri, Chuncheon in 1995. Further detailed characterization of the strain WT3 was done by PCR amplification using specific primers described previously for distinguishing Erwinia pyrifoliae from its close pathogen Erwinia amylovora. Based on phenotypical, biochemical, and molecular analyses, strain WT3 was identified as a shoot blight pathogen which was the same as E. pyrifoliae Ep16 previously described by a German group in 1999.

Identification of Plant Factors Involving in Agrobacterium-mediated Plant Transformation

  • Nam, Jaesung
    • 식물조직배양학회지
    • /
    • 제27권5호
    • /
    • pp.387-393
    • /
    • 2000
  • The process by which Agrobacterium tumefaciens genetically transforms plants involves a complex series of reactions communicated between the pathogen and the plants. To identify plant factors involved in agrobacterium-mediated plant transformation, a large number of T-DNA inserted Arabidopsis thaliana mutant lines were investigated for susceptibility to Agrobacterium infection by using an in vitro root inoculation assay. Based on the phenotype of tumorigenesis, twelve T-DNA inserted Arabidopsis mutants(rat) that were resistant to Agrobacterium transformation were found. Three mutants, rat1, rat3, and rat4 were characterized in detail. They showed low transient GUS activity and very low stable transformation efficiency compared to the wild-type plant. The resistance phenotype of rat1 and rats resulted from decreased attachment of Agrobacterium tumefaciens to inoculated root explants. They may be deficient in plant actors that are necessary for bacterial attachment to plant cells. The disrupted genes in rat1, rat3, and rat4 mutants were coding a arabinogalactan protein, a likely cell wall protein and a cellulose synthase-like protein, respectively.

  • PDF

키위 궤양병 효율적 관리를 위한 매뉴얼 (A Proposed Manual for the Efficient Management of Kiwifruit Bacterial Canker in Korea)

  • 고영진;김경희;정재성
    • 식물병연구
    • /
    • 제23권1호
    • /
    • pp.1-18
    • /
    • 2017
  • 키위 궤양병균인 Pseudomonas syringae pv. actinidiae는 최근 전세계에서 심각하게 경제적 손실을 초래하고 있다. 궤양병균은 우리나라에서 그린키위와 골드키위 품종들을 각각 1988년과 2006년부터 침해해왔다. 최근에는 오염된 수입꽃가루에 의해 유입된 궤양병균 biovar 3 (Psa3)가 주변 키위 재배 농가로 2차감염에 의해 급속하게 확산되어 골드키위와 레드키위 품종들에 대발생하여 피해를 주고 있다. 이 총설에서는 지난 30년간 수행한 연구 업적과 현장 경험 그리고 세계적인 주요 연구 산물들을 기초로 하여 궤양병 발생 회피, 경종적 방제, 궤양병균의 전파 차단, 조기 진단, 전염원 제거, 침입 차단, 약제 방제, 나무 치료 등 다양한 키위 궤양병 관리방법들을 요약하여 장차 키위나무를 건강하게 재배할 수 있도록 농가에서 실용적으로 사용할 수 있는 매뉴얼을 제시하고자 한다.

Pseudomonas avenae에 의한 벼$\cdot$세균성 줄무늬병 (Pseudomonas avenae Causing Bacterial Brown Stripe Disease of Rice in Korea)

  • D.D. 샤키아;정후섭
    • 한국식물병리학회지
    • /
    • 제1권1호
    • /
    • pp.38-43
    • /
    • 1985
  • 한국에서 처음으로 벼못자리와 폿트에 자란 모에서 세균성갈색줄무늬병을 기록하였다. 포장에서 자란 이병식물로부터 분리한 균주를 주사 또는 침접종한 결과, 자연상태의 병징과 비슷하였다. 공시한 10과 11종의 화본과식물 중에서 Echinochloa crusgalli, Digitaria sanguinalis, Setaria viridis는 본 병원세균의 새로운 기주로 밝혀졌다. 생화학적 특성 및 병원성등을 토대로 본 세균을 Psudomonas avenae Manns로 동정하였다.

  • PDF

First Report on Bacterial Heart Rot of Garlic Caused by Pseudomonas fluorescens in China

  • Li, Bin;Yu, Rong Rong;Yu, Shan Hong;Qiu, Wen;Fang, Yuan;Xie, Guan Lin
    • The Plant Pathology Journal
    • /
    • 제25권1호
    • /
    • pp.91-94
    • /
    • 2009
  • An unreported disease of garlic was observed in commercial fields in Jiangsu province, China. The symptoms started as water soaked lesions at the base of the leaves. Later, water-soaked areas developed on stems and spread to the internal tissues, followed by yellowing and necrosis along leaf edges and soft rot of the stems. The causal organism isolated from symptomatic plants was identified as Pseudomonas fluorescens based on its biochemical and physiological characteristics and confirmed by the cellular fatty acid composition and Biolog data as well as 168 rRNA gene sequence analysis. The bacterial isolates caused similar symptoms when inoculated onto garlic plants. In addition, leek and shallot were susceptible to the P. fluorescens pathogen. However, the P. fluorescens pathogen failed to cause any symptoms when it was inoculated onto 15 other plants. This is the first report of a bacterial disease of garlic caused by P. fluorescens in China.

Bacterial Fruit Rot of Apricot Caused by Burkholderia cepacia in China

  • Fang, Yuan;Li, Bin;Wang, Fang;Liu, Baoping;Wu, Zhiyi;Su, Ting;Qiu, Wen;Xie, Guanlin
    • The Plant Pathology Journal
    • /
    • 제25권4호
    • /
    • pp.429-432
    • /
    • 2009
  • An unreported disease of apricot was observed in orchards in Zhejiang province, China. Symptoms started as water soaked lesions on the fruit surface. Later, water-soaked areas developed and spread to the entire fruit, resulting in soft rot of the whole fruit. The causal organism isolated from symptomatic fruits was identified as Burkholderia cepacia based on its biochemical and physiological characteristics and confirmed by the cellular fatty acid composition and Biolog data as well as 16S rRNA gene sequence analysis. The bacterial isolates caused similar symptoms when inoculated onto fruits of apricot. In addition, European plum, Japanese plum, nectarine and kiwifruit were susceptible to the B. cepacia pathogen. However, the B. cepacia pathogen failed to cause any visible symptoms when it was inoculated onto 16 other fruits. This is the first report of a bacterial disease of apricot caused by B. cepacia in China.