• Title/Summary/Keyword: plant's noise

Search Result 116, Processing Time 0.021 seconds

Steel Plate Faults Diagnosis with S-MTS (S-MTS를 이용한 강판의 표면 결함 진단)

  • Kim, Joon-Young;Cha, Jae-Min;Shin, Junguk;Yeom, Choongsub
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.47-67
    • /
    • 2017
  • Steel plate faults is one of important factors to affect the quality and price of the steel plates. So far many steelmakers generally have used visual inspection method that could be based on an inspector's intuition or experience. Specifically, the inspector checks the steel plate faults by looking the surface of the steel plates. However, the accuracy of this method is critically low that it can cause errors above 30% in judgment. Therefore, accurate steel plate faults diagnosis system has been continuously required in the industry. In order to meet the needs, this study proposed a new steel plate faults diagnosis system using Simultaneous MTS (S-MTS), which is an advanced Mahalanobis Taguchi System (MTS) algorithm, to classify various surface defects of the steel plates. MTS has generally been used to solve binary classification problems in various fields, but MTS was not used for multiclass classification due to its low accuracy. The reason is that only one mahalanobis space is established in the MTS. In contrast, S-MTS is suitable for multi-class classification. That is, S-MTS establishes individual mahalanobis space for each class. 'Simultaneous' implies comparing mahalanobis distances at the same time. The proposed steel plate faults diagnosis system was developed in four main stages. In the first stage, after various reference groups and related variables are defined, data of the steel plate faults is collected and used to establish the individual mahalanobis space per the reference groups and construct the full measurement scale. In the second stage, the mahalanobis distances of test groups is calculated based on the established mahalanobis spaces of the reference groups. Then, appropriateness of the spaces is verified by examining the separability of the mahalanobis diatances. In the third stage, orthogonal arrays and Signal-to-Noise (SN) ratio of dynamic type are applied for variable optimization. Also, Overall SN ratio gain is derived from the SN ratio and SN ratio gain. If the derived overall SN ratio gain is negative, it means that the variable should be removed. However, the variable with the positive gain may be considered as worth keeping. Finally, in the fourth stage, the measurement scale that is composed of selected useful variables is reconstructed. Next, an experimental test should be implemented to verify the ability of multi-class classification and thus the accuracy of the classification is acquired. If the accuracy is acceptable, this diagnosis system can be used for future applications. Also, this study compared the accuracy of the proposed steel plate faults diagnosis system with that of other popular classification algorithms including Decision Tree, Multi Perception Neural Network (MLPNN), Logistic Regression (LR), Support Vector Machine (SVM), Tree Bagger Random Forest, Grid Search (GS), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The steel plates faults dataset used in the study is taken from the University of California at Irvine (UCI) machine learning repository. As a result, the proposed steel plate faults diagnosis system based on S-MTS shows 90.79% of classification accuracy. The accuracy of the proposed diagnosis system is 6-27% higher than MLPNN, LR, GS, GA and PSO. Based on the fact that the accuracy of commercial systems is only about 75-80%, it means that the proposed system has enough classification performance to be applied in the industry. In addition, the proposed system can reduce the number of measurement sensors that are installed in the fields because of variable optimization process. These results show that the proposed system not only can have a good ability on the steel plate faults diagnosis but also reduce operation and maintenance cost. For our future work, it will be applied in the fields to validate actual effectiveness of the proposed system and plan to improve the accuracy based on the results.

Leakage noise detection using a multi-channel sensor module based on acoustic intensity (음향 인텐시티 기반 다채널 센서 모듈을 이용한 배관 누설 소음 탐지)

  • Hyeonbin Ryoo;Jung-Han Woo;Yun-Ho Seo;Sang-Ryul Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.414-421
    • /
    • 2024
  • In this paper, we design and verify a system that can detect piping leakage noise in an environment with significant reverberation and reflection using a multi-channel acoustic sensor module as a technology to prevent major plant accidents caused by leakage. Four-channel microphones arranged in a tetrahedron are designed as a single sensor module to measure three-dimensional sound intensity vectors. In an environment with large effects of reverberation and reflection, the measurement error of each sensor module increases on average, so after placing multiple sensor modules in the field, measurement results showing locations with large errors due to effects such as reflection are excluded. Using the intersection between three-dimensional vectors obtained from several pairs of sensor modules, the coordinates where the sound source is located are estimated, and outliers (e.g., positions estimated to be outside the site, positions estimated to be far from the average position) are detected and excluded among the points. For achieving aforementioned goal, an excluding algorithm by deciding the outliers among the estimated positions was proposed. By visualizing the estimated location coordinates of the leakage sound on the site drawing within 1 second, we construct and verify a system that can detect the location of the leakage sound in real time and enable immediate response. This study is expected to contribute to improving accident response capabilities and ensuring safety in large plants.

Quality Assessment of GPS L2C Signals and Measurements

  • Yun, Seonghyeon;Lee, Hungkyu
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.13-20
    • /
    • 2021
  • A series of numerical experiments with measurements observed at continuously operating reference stations (CORS) of the international GNSS services (IGS) and the national geographical information institute of Korea (NGII) have been intensively carried out to evaluate the quality of pseudo-ranges and carrier-phases of GPS L2C signal obtained by various receiver types, benign and harsh operational environment. In this analysis, some quality measures, such as signal-to-noise ratio (SNR), the magnitude of multipath, and the number of cycle slips, the pseudo-range and carrier phase obtaining rate were computed and compared. The SNR analysis revealed an impressive result that the trend in the SNR of C/A and the L2C comparably depends upon type of receivers. The result of multipath analysis also showed clearly different tendency depending on the receiver types. The reason for this inconsistent tendency was seemed to be that the different multipath mitigation algorithm built-in each receiver. The number of L2C cycle slip was less than P2(Y), and L2C measurements obtaining rate was higher than that of P2(Y) in three receiver types. In the harsh observational environment, L2C quality was not only superior to P2(Y) in all aspects such as SNR, multipath magnitude, the number of cycle slips, and measurement obtaining rate, but also it could maintain a level of quality equivalent to C/A. According to the results of this analysis, it's expected that improved positioning performance like accuracy and continuity can be got through the use of L2C instead of existing P2(Y).

The characteristics of nuclear powered submarine and the use of enriched uranium (원자력 추진 잠수함의 특성과 농축우라늄 사용)

  • Jang, Jun-Seop
    • Strategy21
    • /
    • s.41
    • /
    • pp.261-293
    • /
    • 2017
  • Nuclear power is a way of attaining an enormous amount of energy with relatively small amount of resources and after it has been introduced to the submarine since 1954, there are approximately 150 of nuclear powered submarine currently on a mission around the world. This is due to the maneuverability, mountability and covertness of nuclear submarines. However, there are other tasks, not only the high level of nuclear technology that are needed to be dealt with in order to construct nuclear powered submarine. The biggest task of all is to secure the enriched uranium. Accordingly, this research is about the way of enriching and securing the nuclear fuel that are used in the nuclear submarine with the characteristics, merits and demerits of the nuclear submarine. Due to the fact that the pressurized water reactor in South Korea is the reactor that was originally built for the development of nuclear powered submarine, many parts is designed to be suitable for the submarine propulsion. However, in order to apply this to submarine it is needed to consider additional requests such as the position of reactor, accident-coping system, radioactive covering, reactor output adjustment and ship's pitch and roll in order to apply this to submarine. Nuclear submarines have much higher speed based on the powerful propulsion in comparison with diesel-electric submarine and also have bigger loading area. Besides, there is no need to snorkel and they also have advantages in covertness with the multi-noise proof system. The nuclear technology in South Korea has seen the dramatic development since 1962 and in 1998 reached to the level that we have succeeded in the localization of nuclear plant and exported the world-class one-piece small-sized reactor (SMART) to UAE. To operate these reactors, we import the whole quantity of low-enriched uranium and having our own uranium enrich facility is not probable because of the budget and international regulations. With the ROK/US nuclear agreement revised on 2015 November, the enrichment of uranium that are available without special permission has changed up to 20%. According to the assumption that we use the 20% enrichment of Uranium on U.S. virginia class submarine, it is necessary to change the fuel after 11 years and it will cause additional cost of 1 billion dollars. But the replace period by the uranium's enrichment rate is not fixed so that it is possible to change according to the design of reactor. Therefore, I would like to make a suggestion on two types of design concepts of nuclear submarine that can be operated for 30 years without nuclear fuel change by using the 20% enriched uranium from ONNp.First of all, it is possible by increasing the size of reactor by 3 times and it results in the 1,000t increase of the weight. And secondly, it is by designing the one piece reactor to insert devices such as steam turbine, condenser into the inside of nuclear core like the Rubis class submarines of France.

Technical Inefficiency in Korea's Manufacturing Industries (한국(韓國) 제조업(製造業)의 기술적(技術的) 효율성(效率性) : 산업별(産業別) 기술적(技術的) 효율성(效率性)의 추정(推定))

  • Yoo, Seong-min;Lee, In-chan
    • KDI Journal of Economic Policy
    • /
    • v.12 no.2
    • /
    • pp.51-79
    • /
    • 1990
  • Research on technical efficiency, an important dimension of market performance, had received little attention until recently by most industrial organization empiricists, the reason being that traditional microeconomic theory simply assumed away any form of inefficiency in production. Recently, however, an increasing number of research efforts have been conducted to answer questions such as: To what extent do technical ineffciencies exist in the production activities of firms and plants? What are the factors accounting for the level of inefficiency found and those explaining the interindustry difference in technical inefficiency? Are there any significant international differences in the levels of technical efficiency and, if so, how can we reconcile these results with the observed pattern of international trade, etc? As the first in a series of studies on the technical efficiency of Korea's manufacturing industries, this paper attempts to answer some of these questions. Since the estimation of technical efficiency requires the use of plant-level data for each of the five-digit KSIC industries available from the Census of Manufactures, one may consture the findings of this paper as empirical evidence of technical efficiency in Korea's manufacturing industries at the most disaggregated level. We start by clarifying the relationship among the various concepts of efficiency-allocative effciency, factor-price efficiency, technical efficiency, Leibenstein's X-efficiency, and scale efficiency. It then becomes clear that unless certain ceteris paribus assumptions are satisfied, our estimates of technical inefficiency are in fact related to factor price inefficiency as well. The empirical model employed is, what is called, a stochastic frontier production function which divides the stochastic term into two different components-one with a symmetric distribution for pure white noise and the other for technical inefficiency with an asymmetric distribution. A translog production function is assumed for the functional relationship between inputs and output, and was estimated by the corrected ordinary least squares method. The second and third sample moments of the regression residuals are then used to yield estimates of four different types of measures for technical (in) efficiency. The entire range of manufacturing industries can be divided into two groups, depending on whether or not the distribution of estimated regression residuals allows a successful estimation of technical efficiency. The regression equation employing value added as the dependent variable gives a greater number of "successful" industries than the one using gross output. The correlation among estimates of the different measures of efficiency appears to be high, while the estimates of efficiency based on different regression equations seem almost uncorrelated. Thus, in the subsequent analysis of the determinants of interindustry variations in technical efficiency, the choice of the regression equation in the previous stage will affect the outcome significantly.

  • PDF

Differences in the Soundscape Characteristics of a Natural Park and an Urban Park (자연공원과 도시공원의 Soundscape 특성 차이)

  • Gim, Ji-youn;Lee, Jae-Yoon;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.1
    • /
    • pp.112-118
    • /
    • 2017
  • The purpose of this study is to clarify the characteristics of the soundscape in a natural park and an urban park. The study sites were a natural park (Chiaksan Nationalpark) and an urban park (Rose Park) in Wonju City, Gangwon Province. Soundscape recording was conducted using Digital Recorder from April 2015 to January 2016. The analysis period was 8 days per season, with a total of 64 days (2 places). Analysis items were soundscape's daily cycle, soundscape type, and seasonal variation. According to the result of the daily cycle analysis of the soundscape, the natural park was dominated by the biophony in accordance with the cycle of the sun, and the airplane sound was observed in the daytime. Meanwhile, anthrophony was consistently produced in the urban park 24 hours a day. As a result of the detailed type analysis of the soundscape, the sources of biophony were classified into wild birds, mammals, insects and amphibians, and the sources of geophony were classified into rain and wind. The anthrophony was mostly airplane sound. In the urban park, wild birds appeared to most influence the biophonic sounds while rain and the wind were the most frequent sounds that contribute to geophony. The most influential components of anthrophony in the urban park were in the order of automobiles, people, music, construction, cleaning, and airplane sound. As a result of the seasonal difference analysis of the soundscape, it was statistically significant that the natural park shows higher biophony in spring, summer, and autumn compared to the urban park. Anthrophony in the urban park appeared to be higher than the natural park in all seasons. The significance of this study is that it is the first study to identify the characteristics of the soundscape of a natural park and an urban park emanating from different landscapes in South Korea.