• Title/Summary/Keyword: planning target volume

Search Result 284, Processing Time 0.03 seconds

Development of a Stereotactic Radiosurgery Planning System (뇌정위 방사선수술을 위한 컴퓨터 치료계획시스템의 개발)

  • 조병철;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.8 no.1
    • /
    • pp.17-24
    • /
    • 1997
  • We developed PC-based planning system for linear accelerator based stereotactic radiosurgery. The system was developed under Windows 95 on Pentium Pro$\^$(R) 200 ㎒ IBM PC with 128 MB RAM. It was programed using IDL$\^$(R)/ of Research Systems, Inc. as a programing tool. CT image data obtained with BRW stereotactic frame is transferred to PC through magnetoptical disk. As loading the image, the system automatically recognizes the location of rods and establishes stereotactic coordinates. It accurately calculates and corrects the coordinates, degree of tilting, and magnification rate of axial images. After the coordinates is defined we can delineate and edit the contours of target and organs of interest on axial images. Upon delineating contours of target, isocenter is determined automatically and we can set up the beam configuration for radiosurgery. The system provides beam's eye view and room's eye view for efficient confuguring of beams. The system calculates dose distribution 3-dimensionally. It takes 1 to 2 minutes to calculate dose distribution for 5 arcs. We can verify the dose distribution on serial axial images. We can analyze the dose distribution quantitatively by evaluation of dose-volume histogram of target and organ of interest. This system, PC-based radiosurgery planning system, includes the basic features for radiosurgery planning and calculates dose distribution within reasonable time for clinical application.

  • PDF

Dosimetric Comparison between Intensity Modulated Radiotherapy and 3 Dimensional Conformal Radiotherapy in the Treatment of Rectal Cancer

  • Simson, David K;Mitra, Swarupa;Ahlawat, Parveen;Sharma, Manoj Kumar;Yadav, Girigesh;Mishra, Manindra Bhushan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.4935-4937
    • /
    • 2016
  • Objective: To compare dosimetric parameters of 3 dimensional conformal radiotherapy (3 DCRT) and intensity modulated radiotherapy (IMRT) in terms of target coverage and doses to organs at risk (OAR) in the management of rectal carcinoma. Methods: In this prospective study, conducted between August 2014 and March 2016, all patients underwent CT simulation along with a bladder protocol and target contouring according to the Radiation Therapy Oncology Group (RTOG) guidelines. Two plans were made for each patient (3 DCRT and IMRT) for comparison of target coverage and OAR. Result: A total of 43 patients were recruited into this study. While there were no significant differences in mean Planning Target Volume (PTV) D95% and mean PTV D98% between 3 DCRT and IMRT, mean PTV D2% and mean PTV D50% were significantly higher in 3 DCRT plans. Compared to IMRT, 3 DCRT resulted in significantly higher volumes of hot spots, lower volumes of cold spots, and higher doses to the entire OAR. Conclusion: This study demonstrated that IMRT achieves superior normal tissue avoidance (bladder and bowel) compared to 3 DCRT, with comparable target dose coverage.

The Variable Ellipsoid Modeling Technique as a Verification Method for the Treatment Planning System of Gamma Knife Radiosurgery

  • Hur, Beong-Ik;Choi, Byung-Kwan;Sung, Soon-Ki;Cho, Won-Ho;Cha, Seung-Heon;Choi, Chang-Hwa
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.2
    • /
    • pp.128-133
    • /
    • 2010
  • Objective : The secondary verification of Leksell Gamma Knife treatment planning system (LGP) (which is the primary verification system) is extremely important in order to minimize the risk of treatment errors. Although prior methods have been developed to verify maximum dose and treatment time, none have studied maximum dose coordinates and treatment volume. Methods : We simulated the skull shape as an ellipsoid with its center at the junction between the mammillary bodies and the brain stem. The radiation depths of the beamlets emitted from 201 collimators were calculated based on the relationship between this ellipsoid and a single beamlet expressed as a straight line. A computer program was coded to execute the algorithm. A database system was adopted to log the doses for $31{\times}31{\times}31$ or 29,791 matrix points allowing for future queries to be made of the matrix of interest. Results : When we compared the parameters in seven patients, all parameters showed good correlation. The number of matrix points with a dose higher than 30% of the maximal dose was within ${\pm}\;2%$ of LGP. The 50% dose volume, which is generally the target volume, differs maximally by 4.2%. The difference of the maximal dose ranges from 0.7% to 7%. Conclusion : Based on the results, the variable ellipsoid modeling technique or variable ellipsoid modeling technique (VEMT) can be a useful and independent tool to verify the important parameters of LGP and make up for LGP.

Development of Conformal Radiotherapy with Respiratory Gate Device (호흡주기에 따른 방사선입체조형치료법의 개발)

  • Chu Sung Sil;Cho Kwang Hwan;Lee Chang Geol;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.41-52
    • /
    • 2002
  • Purpose : 3D conformal radiotherapy, the optimum dose delivered to the tumor and provided the risk of normal tissue unless marginal miss, was restricted by organ motion. For tumors in the thorax and abdomen, the planning target volume (PTV) is decided including the margin for movement of tumor volumes during treatment due to patients breathing. We designed the respiratory gating radiotherapy device (RGRD) for using during CT simulation, dose planning and beam delivery at identical breathing period conditions. Using RGRD, reducing the treatment margin for organ (thorax or abdomen) motion due to breathing and improve dose distribution for 3D conformal radiotherapy. Materials and Methods : The internal organ motion data for lung cancer patients were obtained by examining the diaphragm in the supine position to find the position dependency. We made a respiratory gating radiotherapy device (RGRD) that is composed of a strip band, drug sensor, micro switch, and a connected on-off switch in a LINAC control box. During same breathing period by RGRD, spiral CT scan, virtual simulation, and 3D dose planing for lung cancer patients were peformed, without an extended PTV margin for free breathing, and then the dose was delivered at the same positions. We calculated effective volumes and normal tissue complication probabilities (NTCP) using dose volume histograms for normal lung, and analyzed changes in doses associated with selected NTCP levels and tumor control probabilities (TCP) at these new dose levels. The effects of 3D conformal radiotherapy by RGRD were evaluated with DVH (Dose Volume Histogram), TCP, NTCP and dose statistics. Results : The average movement of a diaphragm was 1.5 cm in the supine position when patients breathed freely. Depending on the location of the tumor, the magnitude of the PTV margin needs to be extended from 1 cm to 3 cm, which can greatly increase normal tissue irradiation, and hence, results in increase of the normal tissue complications probabiliy. Simple and precise RGRD is very easy to setup on patients and is sensitive to length variation (+2 mm), it also delivers on-off information to patients and the LINAC machine. We evaluated the treatment plans of patients who had received conformal partial organ lung irradiation for the treatment of thorax malignancies. Using RGRD, the PTV margin by free breathing can be reduced about 2 cm for moving organs by breathing. TCP values are almost the same values $(4\~5\%\;increased)$ for lung cancer regardless of increasing the PTV margin to 2.0 cm but NTCP values are rapidly increased $(50\~70\%\;increased)$ for upon extending PTV margins by 2.0 cm. Conclusion : Internal organ motion due to breathing can be reduced effectively using our simple RGRD. This method can be used in clinical treatments to reduce organ motion induced margin, thereby reducing normal tissue irradiation. Using treatment planning software, the dose to normal tissues was analyzed by comparing dose statistics with and without RGRD. Potential benefits of radiotherapy derived from reduction or elimination of planning target volume (PTV) margins associated with patient breathing through the evaluation of the lung cancer patients treated with 3D conformal radiotherapy.

Evaluating Correlation between Geometrical Relationship and Dose Difference Caused by Respiratory Motion Using Statistical Analysis

  • Shin, Dong-Seok;Kang, Seong-Hee;Kim, Dong-Su;Kim, Tae-Ho;Kim, Kyeong-Hyeon;Cho, Min-Seok;Noh, Yu-Yoon;Yoon, Do-Kun;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.203-212
    • /
    • 2016
  • Dose differences between three-dimensional (3D) and four-dimensional (4D) doses could be varied according to the geometrical relationship between a planning target volume (PTV) and an organ at risk (OAR). The purpose of this study is to evaluate the correlation between the overlap volume histogram (OVH), which quantitatively shows the geometrical relationship between the PTV and OAR, and the dose differences. 4D computed tomography (4DCT) images were acquired for 10 liver cancer patients. Internal target volume-based treatment planning was performed. A 3D dose was calculated on a reference phase (end-exhalation). A 4D dose was accumulated using deformation vector fields between the reference and other phase images of 4DCT from deformable image registration, and dose differences between the 3D and 4D doses were calculated. An OVH between the PTV and selected OAR (duodenum) was calculated and quantified on the basis of specific overlap volumes that corresponded to 10%, 20%, 30%, 40%, and 50% of the OAR volume overlapped with the expanded PTV. Statistical analysis was performed to verify the correlation with the OVH and dose difference for the OAR. The minimum mean dose difference was 0.50 Gy from case 3, and the maximum mean dose difference was 4.96 Gy from case 2. The calculated range of the correlation coefficients between the OVH and dose difference was from -0.720 to -0.712, and the R-square range for regression analysis was from 0.506 to 0.518 (p-value <0.05). However, when the 10% overlap volume was applied in the six cases that had OVH value ${\leq}2$, the average percent mean dose differences were $34.80{\pm}12.42%$. Cases with quantified OVH values of 2 or more had mean dose differences of $29.16{\pm}11.36%$. In conclusion, no significant statistical correlation was found between the OVH and dose differences. However, it was confirmed that a higher difference between the 3D and 4D doses could occur in cases that have smaller OVH value.

Dosimetric Evaluation of Static and Dynamic Intensity Modulated Radiation Treatment Planning and Delivery (세기조절방사선치료에서 조사방법이 빔 파라미터 및 선량에 미치는 영향에 대한 연구)

  • Kim Sung-Kyu;Kim Myung-Se;Yun Sang-Mo
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.114-122
    • /
    • 2006
  • The two commonly used methods in delivering intensity modulated radiation therapy (IMRT) plan are the dynamic (sliding window) and static (stop and shoot) mode. In this study, the two IMRI delivery techniques are compared by measuring point dose and dose distributions. Using treatment planning system, clinical target volume (CTV) was created as a sphere with various diameter (3 cm, 7 cm, 12 cm). Two IMRT plans were peformed to deliver 200 cGy to the CTV in dynamic and static mode. The two plans were delivered on a phantom and central point dose and dose distributions were measured. The central point dose differences between static and dynamic IMRT delivery were 0.2%, 0.2% and 0.4% when the diameter of CTV was 3 cm, 7 cm, and 12 cm, respectively. The differences In volume receiving 90% of the proscribed dose were 2.7%, 2.2%, and 2.9% for the diameter of CTV was 3 cm, 7 cm, and 12 cm, respectively. For lung cancer patients, the differences in central point dose were 0.2%, 0.2%, and 0.4% when the volume of CTV was 35.5 cc, 296.8 cc, and 903.5 cc, respectively. The differences in volume receiving 90% of the prescribed dose were 2.7%, 4.8%, and 9.1% when the volume of CTV was 35.5 cc, 296.8 cc, and 903.5 cc, respectively. In conclusion, it was possible to deliver IMRT plans using dynamic mode of MLC operation although the loaves are In motion during radiation delivery.

  • PDF

Dose Planning of Forward Intensity Modulated Radiation Therapy for Nasopharyngeal Cancer using Compensating Filters (보상여과판을 이용한 비인강암의 전방위 강도변조 방사선치료계획)

  • Chu Sung Sil;Lee Sang-wook;Suh Chang Ok;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.53-65
    • /
    • 2001
  • Purpose : To improve the local control of patients with nasopharyngeal cancer, we have implemented 3-D conformal radiotherapy and forward intensity modulated radiation therapy (IMRT) to used of compensating filters. Three dimension conformal radiotherapy with intensity modulation is a new modality for cancer treatments. We designed 3-D treatment planning with 3-D RTP (radiation treatment planning system) and evaluation dose distribution with tumor control probability (TCP) and normal tissue complication probability (NTCP). Material and Methods : We have developed a treatment plan consisting four intensity modulated photon fields that are delivered through the compensating tilters and block transmission for critical organs. We get a full size CT imaging including head and neck as 3 mm slices, and delineating PTV (planning target volume) and surrounding critical organs, and reconstructed 3D imaging on the computer windows. In the planning stage, the planner specifies the number of beams and their directions including non-coplanar, and the prescribed doses for the target volume and the permissible dose of normal organs and the overlap regions. We designed compensating filter according to tissue deficit and PTV volume shape also dose weighting for each field to obtain adequate dose distribution, and shielding blocks weighting for transmission. Therapeutic gains were evaluated by numerical equation of tumor control probability and normal tissue complication probability. The TCP and NTCP by DVH (dose volume histogram) were compared with the 3-D conformal radiotherapy and forward intensity modulated conformal radiotherapy by compensator and blocks weighting. Optimization for the weight distribution was peformed iteration with initial guess weight or the even weight distribution. The TCP and NTCP by DVH were compared with the 3-D conformal radiotherapy and intensitiy modulated conformal radiotherapy by compensator and blocks weighting. Results : Using a four field IMRT plan, we have customized dose distribution to conform and deliver sufficient dose to the PTV. In addition, in the overlap regions between the PTV and the normal organs (spinal cord, salivary grand, pituitary, optic nerves), the dose is kept within the tolerance of the respective organs. We evaluated to obtain sufficient TCP value and acceptable NTCP using compensating filters. Quality assurance checks show acceptable agreement between the planned and the implemented MLC(multi-leaf collimator). Conclusion : IMRT provides a powerful and efficient solution for complex planning problems where the surrounding normal tissues place severe constraints on the prescription dose. The intensity modulated fields can be efficaciously and accurately delivered using compensating filters.

  • PDF

Feasibility and Efficacy of Adaptive Intensity Modulated Radiotherapy Planning according to Tumor Volume Change in Early Stage Non-small Cell Lung Cancer with Stereotactic Body Radiotherapy (폐암의 정위적체부방사선치료에서 육안적종양체적 변화에 따른 적응방사선치료의 효용성 및 가능성 연구)

  • Park, Jae Won;Kang, Min Kyu;Yea, Ji Woon
    • Progress in Medical Physics
    • /
    • v.26 no.2
    • /
    • pp.79-86
    • /
    • 2015
  • The purpose of this study is to evaluate efficacy and feasibility of adaptive radiotherapy according to tumor volume change (TVC) in early stage non-small cell lung cancer (NSCLC) using stereotactic body radiotherapy (SBRT). Twenty-two lesions previously treated with SBRT were selected. SBRT was usually performed with a total dose of 48 Gy or 60 Gy in four fractions with an interval of three to four days between treatments. For evaluation of TVC, gross tumor volume (GTV) was contoured on each cone-beam computed tomography (CBCT) image used for image guidance. Intensity modulated radiotherapy (IMRT) planning was performed in the first CBCT (CBCT1) using a baseline plan. For ART planning (ART), re-optimization was performed at $2^{nd}$, $3^{rd}$, and $4^{th}$ CBCTs (CBCT2, CBCT3, and CBCT4) using the same angle and constraint used for the baseline plan. The ART plan was compared with the non-ART plan, which generated copying of the baseline plan to other CBCTs. Average GTV volume was 10.7 cc. Average TVC was -1.5%, 7.3%, and -25.1% in CBCT2, CBCT3, and CBCT4 and the TVC after CBCT3 was significant (p<0.05). However, the nine lesions were increased GTV in CBCT2. In the ART plan, $V_{20\;Gy}$, $D_{1500\;cc}$, and $D_{1000\;cc}$ of lung were significantly decreased (p<0.05), and $V_{30\;Gy}$ and $V_{32\;Gy}$ of the chest wall were also decreased (p<0.05). While D min of planning target volume (PTV) decreased by 8.3% in the non-ART plan of CBCT2 compared with the baseline plan in lesions with increased tumor size (p=0.021), PTV coverage was not compromised in the ART plan. Based on this result, use of the ART plan may improve target coverage and OAR saving. Thus ART using CBCT should be considered in early stage NSCLC with SBRT.

Intensity Modulated Radiation Therapy of Brain Tumor

  • Kim, Sung-Kyu;Kim, Myung-Se
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.61-64
    • /
    • 2002
  • As intensity modulated radiation therapy compared with conventional radiation therapy, tumor target dose increased and normal tissues and critical organs dose reduced. In brain tumor, treatment planning of intensity modulated radiation therapy was practiced in 4MV, 6MV, 15MV X-ray energy. In these X-ray energy, was considered the dose distribution and dose volume histogram. As 4MV X-ray compared with 6MV and 15MV, maximum dose of right optic-nerve increased 10.1 %, 8.4%. Right eye increased 5.2%, 2.7%. And left optic-nerve, left eye, optic chiasm and brainstem incrased 1.7% - 5.2%. Even though maximum dose of PTV and these critical organs show different from 1.7% - 10.1% according to X-ray energies, these are a piont dose. Therefore in brain tumor, treatment planning of intensity modulated radiation therapy in 9 treatment field showed no relation with energy dependency.

  • PDF