• Title/Summary/Keyword: plane stress/strain

Search Result 444, Processing Time 0.021 seconds

Behaviour of edge crack propagation under non-symmetric contact tractions (비대칭 접촉하중에 의한 표면균열 전파거동)

  • Kim, Hyung-Kyu;Kang, Heung-Seok;Yoon, Kyung-Ho;Song, Kee-Nam
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.144-150
    • /
    • 2001
  • Considered is non-symmetric contact traction induced by the tilting of a contact body and/or by a far field bulk tensile load to the other body. The problem is under the regime of plane strain. General profile of the contact end is incorporated and partial slip condition is supposed. As an example contact configuration, an indentation of a punch with rounded corners onto a half plane is studied. The variation of the internal stress field due to the tilting and the bulk tension is investigated. An edge crack problem is analyzed to examine the influence of the non-symmetric traction. It is shown that the tilting of a punch does not influence the behaviour of the crack. Rather, the effect of the bulk tension on the cracking behaviour is found considerable.

  • PDF

Consolidated Undrained Triaxial on Cubical Compression and Plane Clay Specimen (입방체 점토시료에 대한 압밀 비배수 삼축압축 및 평면변헝률 시험)

  • 박경기;이강일
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.41-54
    • /
    • 1994
  • This study aims at investigating the mechanism and operation of cubical triaxial test developed by Lade in order to obtain analysis on the clayey foundation deformation. A comparison on deviator stress, pore water pressure and stress path is made between test results of clay using the cubical consolidated undrained test as well as plane strain test.

  • PDF

Three Demensional Behavior of Sand in Cubical Triaxial Tests and Its Prediction (입방체형삼축시험에 의한 모래의 3차원거동 및 예측)

  • 남정만;홍원표
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.111-118
    • /
    • 1994
  • A series of drained cubical triaxial tests was performed to investigate the finfluence of the intermediate principal stress on the deformation and strength characteristics of sand. Test results showed that the strength of sand as represented by the friction angle increased from triaxial compression condition (b:0) with increasing magnitude of the intermediate principal stress until the vus of b reached 0.75, land it decreased slightly with closing to b= 1. Also it was found that the projection of the plastic strain increment vector on the octahedral plane was perpendicular to the trace of the failure surface on that plane. The prediction by the isotropic single hardening model sllowed good coinidence with experimental results.

  • PDF

Acoustic emission during fatigue crack penetration behavior of surface cracked plate (표면균열재의 피로균열 관통거동에 따른 어코스틱에미션)

  • 남기우;김선진;오세규;이건찬;오정환;이주석
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.29-38
    • /
    • 1997
  • Crack penetration behavior by fatigue crack propagation and measurements of AE before-and-after crack penetration were examined using SS41 steel plate. Experimental crack shape of SU type was in good agreement with calculated shape rather than S type. Crack propagation behavior on the front surface appears not to change markedly after penetration. However, crack growth on the back surface appears to accelerate as reported by author. As a crack propagates, AE occurred heavily just before penetration. Then, it decreases and crack is penetrating. A transition from plane strain to plane stress was observed by fractographic study. At this time, separation of fracture surface was shown which affects AE occurrence.

  • PDF

Autofrettage Analysis of Compound Cylinder with Power Function Strain Hardening Model (멱함수 가공경화 모델을 이용한 복합실린더의 자긴가공해석)

  • Park, Jae-Hyun;Lee, Young-Shin;Shim, Woo-Sung;Kim, Jae-Hoon;Cha, Ki-Up;Hong, Suk-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.6
    • /
    • pp.488-495
    • /
    • 2008
  • In order to achieve long fatigue lifetimes for cyclically pressurized thick cylinders, multi-layered compound cylinder has been proposed. Such compound cylinder involves a shrink-fit procedure incorporating a monobloc tube which has previously undergone autofrettage. The basic autofrettage theory assumes elastic-perfectly plastic behaviour. Because of the Bauschinger effect and strain-hardening, most materials do not display elastic-perfectly plastic properties and consequently various autofrettage mo dels are based on different simplified material strain-hardening models, which is assumed that combination of linear strain-hardenig and power strain-hardening model. This approach gives a more accurate prediction than the elastic-perfectly plastic model and is suitable for different strain-hardening materials. In this paper, a general autofrettage model that incorporates the material strain-hardening relationship and the Bauschinger effect, based upon the actual tensile-compressive stress-strain curve of a material was proposed. The model was obtained using the von Mises yield criterion and plane strain condition. The tensile-compressive stress-strain curve was obtained by experiment. The parameters needed in the model were determined by fitting the actual tensile-compressive curve of the material. Finally, strain- hardening model was compared with elastic-perfectly plastic model.

Prediction of the Plastic Strain Ratio Evolution of a Dual-phase Steel (3차원 미세조직에 기반한 잔류응력 하의 이상 조직강의 소성변형률비 예측)

  • Ha, J.;Lee, J.W.;Lee, M. G.;Barlat, F.;Kim, J. H.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.395-399
    • /
    • 2015
  • A microstructure-based finite element simulation was conducted to predict the plastic strain ratio (R-value) of a dual-phase (DP) steel. The representative volume elements (RVEs) concept was adopted for the image-based FE modeling and a 3D model was constructed using sequential 2D images. Each phase was considered with the von-Mises yield criterion and the Swift model. The Swift parameters were defined by the empirical equations based on the chemical composition. The developed model was applied to analyze the effect of residual stress on the R-value and stress distribution. In order to consider the residual stress development after cold rolling, 10 % compression was applied in the thickness direction and unloaded before the tensile stress was applied in the rolling direction. The results showed a reasonable prediction for the R-value evolution: a sharp increase at small strains was well described and a transition followed in the downward direction. The R-value evolution was analyzed using the stress distribution change on the π-plane

Finite Element Analysis for Micro-Forming Process Considering the Size Effect of Materials (소재 크기효과를 고려한 미세가공공정 유한요소해석)

  • Byon, S.M.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.544-549
    • /
    • 2006
  • In this work, we have employed the strain gradient plasticity theory to investigate the effect of material size on the deformation behavior in metal forming process. Flow stress is expressed in terms of strain, strain gradient (spatial derivative of strain) and intrinsic material length. The least square method coupled with strain gradient plasticity was used to calculate the components of strain gradient at each element of material. For demonstrating the size effect, the proposed approach has been applied to plane compression process and micro rolling process. Results show when the characteristic length of the material comes to the intrinsic material length, the effect of strain gradient is noteworthy. For the microcompression, the additional work hardening at higher strain gradient regions results in uniform distribution of strain. In the case of micro-rolling, the strain gradient is remarkable at the exit section where the actual reduction of the rolling finishes and subsequently strong work hardening take places at the section. This results in a considerable increase in rolling force. Rolling force with the strain gradient plasticity considered in analysis increases by 20% compared to that with conventional plasticity theory.

Short Crack Analysis by Fatigue Crack Opening Behavior (피로균열개구거동을 이용한 짧은균열의 거동 분석)

  • Song, Sam-Hong;Lee, Kyeong-Ro
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.136-144
    • /
    • 1997
  • The characteristics of fatigue crack growth subject to out-of-plane bending fatigue are studied in terms of crack opening behavior by using pre-cracked smooth specimens. Crack opening stress is measured by an elastic compliance method which may precisely and continuously provide many date using strain gages during experiment. The results of the short crack and the long crack arranged by crack closure concept show that the effective stress gange ratio of short crack is grester than that of long crack, and ano- malous growth behavior of short crack may be elucidated by the variation of crack opening stress. When the variation of fatigue crack growth rate is arranged versus effective stress intensity factor range. Iinear relation is held also for the short crack. It shows that growth behavior of short crack can be quantitatively represent- ed by the fracture mechanics parameter using effective stress intensity factor range.

  • PDF

The Study on Measurement of In-Plane Displacement in Mechanical Structure applied to Washing Machine using ESPI (ESPI를 이용한 세탁기 적용 기계 구조물의 면내변위 측정에 관한 연구)

  • Lee, Hac-Ju;Kim, Sang-Tea;Choi, Eun-Oh;Chang, Seog-Weon
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.108-113
    • /
    • 2001
  • Recently, the mechanical structures applied to many industrial products, especially in electronic products, appear to be miniaturized and complicated. This trend makes it difficult to analyze the stress distribution of those mechanical structures and generates new challenges for precise measurement of strain. Therefore, generally most of those cases largely depend on the finite element analysis. But the development of optical metrology which has the capability of non-contact, full-field and precise measurement makes it possible to solve these measuring problems. Among the optical measurement techniques, the electronic speckle pattern interferometry (ESPI) has been developed and considered as one of the most useful tools for measuring displacement and deformation. But the shortage of recognition and difficulties of measurement have limited its industrial applications in spite of its excellent capabilities. Therefore in this study, in order to enhance the industrial application of ESPI, the measurement of in-plane displacement of mechanical structure with ESPI, which is applied to washing machine and cannot be measured by strain gauges, was performed. And the verification of validity of FEA results was also done.

  • PDF

Anisotropy in Strength and Deformation Properties of a Variety of Sands by Plane Strain Compression Tests(I) Strength Anisotropy (평면변형률 압축시험에 의한 각종 모래의 강도.변형특성의 이방성(I) -강도 이방성-)

  • 박춘식
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.5-18
    • /
    • 1997
  • Anisotropy in strength and deformation characteristics of isotropically consolidated sande prepared by pluviating through air was studied by plane strain compression tests. Seven types of sand of the world-wide origins were tested, which have been extensively used for research purposes. The strains for direction of bmazimum principal stress and direction of minimum principal strews were measured continuously from $10^{-6}\; to 10^{-2}$. The following results were obtained for all sands. The behaviour at strains leas than about 0.001% was elastic and isotropic regardless of the angle $\delta\; of\; the\;\sigma$ direction relative to the bedding plane. However, the sands became gradually more anisotropic as the strain increased to the extent exceeding the elastic limit. The peak strength was noticeably anisotropic with a similar trend. Thus, the angle of internal friction $\phi\; decreased \;as\;\delta$ decreased from $90^{\circ}$, and the ratio of the smallest to largest values of was between 0.82 and 0.90. The l has a minimum at $\delta=0^{\circ}~30^{\circ}$ depending on the hypes of sand. The residual strength became isotropic again.

  • PDF