• Title/Summary/Keyword: plane heater

Search Result 23, Processing Time 0.019 seconds

Fabrication of Low Power Micro-heater for Micro-Gas Sensor I. The Thermal Distribution Analysis by The Finite Element Method (마이크로 가스센서를 위한 저전력 마이크로 히터의 제조 I. 유한요소법에 의한 열분포해석)

  • Chung, Wan-Young;Lim, Jun-Woo;Lee, Duk-Dong;Yamazoe, Noboru
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.337-345
    • /
    • 1997
  • The micro heater with PSG/$Si_{3}N_{4}$ diaphragm and platinum heater pattern was designed for micro-gas sensor fabrication. The platinum heater and the platinum electrode for sensing layer were designed on the same plane and fabricated in the single photolithography process. The thermal analyses including temperature distribution over the diaphragm and power consumption of the heater were carried by finite element method. The thermal properties of the microsensor with both heater and sensing electrode on the same plane was compared with that of the typical microsensor which had the structure of sensing layer/insulator/heater on the diaphragm.

  • PDF

Heater Design of a Cooling Unit for a Satellite Electro-Optical Payload using a Thermal Analysis (열해석을 이용한 위성 광학탑재체 냉각 장치의 히터설계)

  • Kim, Hui-Kyung;Chang, Su-Young;Choi, Seok-Weon
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.20-28
    • /
    • 2011
  • The electro-optical payload of a low-earth orbit satellite is thermally decoupled with the bus, which supports a payload for a mission operation. The payload has a cooling unit of FPA(Focal Plane Assembly) which has a thermal behavior increasing its temperature instantly during an operation in order to dissipate a waste heat into the space. The FPA cooling unit should include a radiator and heatpipes with a sufficient performance in worst hot condition, and a heater design to maintain its temperature above a minimum allowable temperature in the worst cold condition. In this paper, we analyzed the thermal requirements and the heater design constraints from the thermal analysis results for the current thermal design of the FPA cooling unit and the design elements of the better heater design were found.

Study on the Heat Performance of CNT/carbon Fiber Plane Heater (탄소계 면상발열체 발열 특성 연구)

  • Ko, Yeongung;Kang, Yeongsik;Chung, Yongsik
    • Textile Coloration and Finishing
    • /
    • v.32 no.1
    • /
    • pp.65-71
    • /
    • 2020
  • Electrical energy is used for heating and cooling because electric cars do not have engines and cooling water. The downside is that when the heating and cooling system is applied to electric vehicles, about 40 percent of the energy is spent on heating and cooling, which is less efficient in winter. This has increased demand for electric vehicle battery efficiency. In this study, the condensation and dispersion of carbon nanotubes were controlled, and carbon fibers and composite slurry were manufactured without binders to manufacture paper. Manufactured by content showed the highest heat generation characteristic at 143℃ with a carbon fiber content ratio of 20wt% and confirmed that the heat temperature rises with increasing pressure. The plane heaters made through this study can be applied to a variety of products other than electric vehicles because they can be simplified by process and high temperature.

Characteristics and Fabrication of Micro-Gas Sensors with Heater and Sensing Electrode on the Same Plane (동일면상에 heater와 감지전극을 형성한 마이크로가스센서의 제작 및 특성)

  • Lim, Jun-Woo;Lee, Sang-Mun;Kang, Bong-Hwi;Chung, Wan-Young;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.115-123
    • /
    • 1999
  • A micro-gas sensor with heater and sensing electrode on the same plane was fabricated on phosphosilicate glass(PSG, 800nm)/$Si_3N_4$ (150nm) dielectric membrane. PSG film was provided by atmospheric pressure chemical vapor deposition(APCVD), and $Si_3N_4$ film by low pressure chemical vapor deposition (LPCVD). Total area of the fabricated device was $3.78{\times}3.78mm^2$. The area of diaphragm was $1.5{\times}1.5mm^2$, and that of the sensing layer was $0.24{\times}0.24mm^2$. Finite-element simulation was employed to estimate temperature distribution for a square-shaped diaphragm. The power consumption of Pt heater was about 85mW at $350^{\circ}C$. Tin thin films were deposited on the silicon substrate by thermal evaporation at room temperature and $232^{\circ}C$, and tin oxide films($SnO_2$) were prepared by thermal oxidation of the metallic tin films at $650^{\circ}C$ for 3 hours in oxygen ambient. The film analyses were carried out by SEM and XRD techniques. Effects of humidity and ambient temperature on the resistance of the sensing layer were found to be negligible. The fabricated micro-gas sensor exhibited high sensitivity to butane gas.

  • PDF

Fabrication of low power micro-heater for micro-gas sensor II. Characteristics of micro-gas sensor

  • Chung, Wan-Young;Lee, Sang-Moon;Kang, Bong-Hwi;Jang, Dong-Kun;Lee, Duk-Dong;Yamazoe, Noboru
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.237-244
    • /
    • 1997
  • A new planar-type microsensor, which had a platinum heater and a sensing layer on the same plane was fabricated on silicon substrate with stress-relieved PSG(phosphosilicate glass)/$Si_{3}N_{4}$(800nm/150nm) diaphragm. The proposed planar-type microsensor could be fabricated by simple silicon process using only 3 masks for photolithography process compared with 5 or 6 masks of the typical micro-gas sensor. The thermal properties of the microsensor from thermal simulation were compared with those of the fabricated microheater. Although there are some discrepancy between the simulation result and the result from the fabricated microheater, the thermal simulation by FEM was proved to be an useful method to evaluate the thermal properties of microheater. The sensing characteristics of the fabricated microsensor with the planar-type heater were investigated also.

  • PDF

Experimental Study on the Development of Food Drying Machine for Home Use Using Low Electricity (저전력 가정용 식품건조기 개발에 관한 실험적 연구)

  • Kim, Soon-Ho;Kim, Ki-Wan;Kim, Hoon
    • Journal of Power System Engineering
    • /
    • v.19 no.4
    • /
    • pp.43-49
    • /
    • 2015
  • This study has been analyzed and investigated the possibility for the substitution of a heat source with the application of PTC(Positive Temperature Coefficient Heater) in a food drying machine. And this experiment was conducted to measure temperatures at the upper part of the vessel and the heat sink. And the structure has the many holes plane connected with the external air in the upper part of similar volumetric vessel, and attached to the PTC heater (3sets) of total consumption electricity of 120[W] in Al radiant heat structure and the small fan (2sets) in the suitable space of the lower part. Consequently, it was found that at the most conditions of food drying test with the seven holes(5mm) under the control temperature $62^{\circ}C$, the optimum drying condition formatted and the optimum time range especially appeared from 6,500 second to 7,000 second in case of drying test on banana sample.

Adjustment of the Excess Air Ratio for Stabilizing the Draft System in a Large Capacity Coal Fired Power Plant (대형 석탄화력 발전소에서 통풍계통 안정화를 위한 과잉공기비 조정)

  • Park, Kun Woo;Yoo, Ho-Seon
    • Plant Journal
    • /
    • v.14 no.2
    • /
    • pp.39-44
    • /
    • 2018
  • In this study, I analyzed the effects on stabilizing the draft system, boiler efficiency when changing excess air ratio under 870 MW load limit operation condition in a large capacity coal fired power plant and decided optimum excess air ratio. It is positively necessary to choose adequate excess air ratio for stabilizing draft system because air pre-heater pressure drop and induced draft fan first stall margin are changing when adjusting excess air ratio. This study therefore, measured air pre-heater pressure drop, induced draft fan first stall margin, boiler efficiency, loss and has chosen adequate excess air ratio adjusting excess air ratio from 1.153 to 1.127. So it is recommended that the operation point needs to be changed to 1.127 that is not only to decrease air pre-heater pressure drop and to stabilize draft system and to secure stall margin but also to maintain boiler efficiency to equivalent level.

  • PDF

Prediction of Internal Tube Bundle Failure in High Pressure Feedwater Heater for a Power Generation Boiler by the Operating Record Monitoring (운전기록 모니터링에 의한 발전보일러용 고압 급수가열기 내부 튜브의 파손예측)

  • Kim, Kyeong-seob;Yoo, Hoseon
    • Plant Journal
    • /
    • v.15 no.2
    • /
    • pp.56-61
    • /
    • 2019
  • In this study, the failure analysis of the internal tube occurred in the high pressure feedwater heater for power generation boiler of 500 MW supercritical pressure coal fired power plant was investigated. I suggested a prediction model that can diagnose internal tube failure by changing the position of level control valve on the shell side and the suction flow rate of the boiler feedwater pump. The suggested prediction model is demonstrated through additional cases of feedwater system unbalance. The simultaneous comparison of the shell side level control valve position and the suction flow rate of the boiler feedwater pump compared to the normal operating state value, even in the case of the high pressure feedwater heater for the power boiler, It can be a powerful prediction diagnosis.

Large Displacement Polymer Bimorph Actuator for Out-of-Plane Motion

  • Jeung Won-Kyu;Choi Seog-Moon;Kim Yong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.263-267
    • /
    • 2006
  • A new thermal bimorph actuator for large out-of-plane displacement is designed, fabricated and tested. The deflecting beam is composed of polyimide, heater, and polyvinyl difluorides with tetrafluoroethylene (PVDF-TrFE). The large difference of coefficient of thermal expansion (CTE) of two polymer layers (polyimide and PVDF-TrFE) can generate a significant deflection with relatively small temperature rise. Compared to the most conventional micro actuators based on MEMS (micro-electro mechanical system) technology, a large displacement, over 1 mm at 20 mW, could be achieved. Additionally, we can achieve response time of 14.6 ms, resonance frequency of 12 Hz, and reliability ability of $10^5$ cycles. The proposed actuator can find applications where a large vertical displacement is needed while maintaining compact overall device size, such as a micro zooming lens, micro mirror, micro valve and optical application.

Large Displacement Bimorph Actuator Using MEMS Technology (멤스 기술을 이용한 대변형 바이모프 구동기)

  • 정원규;최석문;김용준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1286-1289
    • /
    • 2004
  • A new thermal bimorph actuator for large out-of-plane displacement is designed, fabricated and tested. The deflecting beam is composed of polyimide, heater, and polyvinyl difluorides with tetrafluoroethylene(PVDF-TrFE). The large difference of coefficient of thermal expansion(CTE) of two polymer layers (polyimide and PVDF-TrFE) can generate a large deflection with relatively small temperature rising. Compared to the most conventional micro actuators based on MEMS(micro-electro mechanical system) technology, a large displacement, over 1 mm at 20 mW, could be achieved. The proposed actuator can find applications where a large vertical displacement is needed while keeping compact overall device size, such as a micro zooming lens.

  • PDF