• Title/Summary/Keyword: planar steel frames

Search Result 19, Processing Time 0.02 seconds

Nonlinear Analysis of Planar Reinforced Concrete Frames (철근(鐵筋)콘크리트 평면(平面)뼈대구조물(構造物)의 비선형해석(非線型解析))

  • Kang, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.149-155
    • /
    • 1983
  • A numerical procedure based on the finite element method for the nonlinear analysis of planar reinforced concrete frames is presented. Material nonlinearities such as cracking of concrete and yielding of steel are incorporated. This method is capable of providing accurate numerical solutions for the response of planar reinforced concrete frames failing primarily, in flexure throughout elastic, inelastic and ultimate load ranges. A numerical example is presented to demonstrate the validity and applicability of the present method. The results are compared with experimental results and the analytical results obtained by other investigator.

  • PDF

Fuzzy analysis for stability of steel frame with fixity factor modeled as triangular fuzzy number

  • Tran, Thanh Viet;Vu, Quoc Anh;Le, Xuan Huynh
    • Advances in Computational Design
    • /
    • v.2 no.1
    • /
    • pp.29-42
    • /
    • 2017
  • This study presents algorithms for determining the fuzzy critical loads of planar steel frame structures with fixity factors of beam - column and column - base connections are modeled as triangular fuzzy numbers. The finite element method with linear elastic semi-rigid connection and Response Surface Method (RSM) in mathematical statistic are applied for problems with symmetric triangular fuzzy numbers. The ${\alpha}$ - level optimization using the Differential Evolution (DE) involving integrated finite element modeling is proposed to apply for problems with any triangular fuzzy numbers. The advantage of the proposed methodologies is demonstrated through some example problems relating to for the twenty - story, four - bay planar steel frames.

Geometrically nonlinear analysis of plane frames with semi-rigid connections accounting for shear deformations

  • Gorgun, H.;Yilmaz, S.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.539-569
    • /
    • 2012
  • The behaviour of beam-to-column connections plays an important role in the analysis and design of steel structures. A computer-based method is presented for nonlinear steel frames with semi-rigid connections accounting for shear deformations. The analytical procedure employs transcendental stability functions to model the effect of axial force on the stiffness of members. The member stiffness matrix, and the fixed end forces for various loads were found. The nonlinear analysis method is applied for three planar steel structures. The method is readily implemented on a computer using matrix structural analysis techniques and is applicable for the efficient nonlinear analysis of frameworks.

Design of steel frames by an enhanced moth-flame optimization algorithm

  • Gholizadeh, Saeed;Davoudi, Hamed;Fattahi, Fayegh
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.129-140
    • /
    • 2017
  • Structural optimization is one of the popular and active research areas in the field of structural engineering. In the present study, the newly developed moth-flame optimization (MFO) algorithm and its enhanced version termed as enhanced moth-flame optimization (EMFO) are employed to implement the optimization process of planar and 3D steel frame structures with discrete design variables. The main inspiration of this optimizer is the navigation method of moths in nature called transverse orientation. A number of benchmark steel frame optimization problems are solved by the MFO and EMFO algorithms and the results are compared with those of other meta-heuristics. The obtained numerical results indicate that the proposed EMFO algorithm possesses better computational performance compared with other existing meta-heuristics.

Seismic design rules for ductile Eurocode-compliant two-storey X concentrically braced frames

  • Costanzo, Silvia;D'Aniello, Mario;Landolfo, Raffaele
    • Steel and Composite Structures
    • /
    • v.36 no.3
    • /
    • pp.273-291
    • /
    • 2020
  • Two-storey X-bracings are currently very popular in European practice, as respect to chevron and simple X bracings, owing to the advantages of reducing the bending demand in the brace-intercepted beams in V and inverted-V configurations and optimizing the design of gusset plate connections. However, rules for two-storey X braced frames are not clearly specified within current version of EN1998-1, thus leading to different interpretations of the code by designers. The research presented in this paper is addressed at investigating the seismic behaviour of two-storey X concentrically braced frames in order to revise the design rules within EN1998-1. Therefore, five different design criteria are discussed, and their effectiveness is investigated. With this aim, a comprehensive numerical parametric study is carried out considering a set of planar frames extracted from a set of structural archetypes that are representative of regular low, medium and high-rise buildings. The obtained results show that the proposed design criteria ensure satisfactory seismic performance.

Seismic design of steel frames using multi-objective optimization

  • Kaveh, A.;Shojaei, I.;Gholipour, Y.;Rahami, H.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.2
    • /
    • pp.211-232
    • /
    • 2013
  • In this study a multi-objective optimization problem is solved. The objectives used here include simultaneous minimum construction cost in term of sections weight, minimum structural damage using a damage index, and minimum non-structural damage in term of inter-story drift under the applied ground motions. A high-speed and low-error neural network is trained and employed in the process of optimization to estimate the results of non-linear time history analysis. This approach can be utilized for all steel or concrete frame structures. In this study, the optimal design of a planar eccentric braced steel frame is performed with great detail, using the presented multi-objective algorithm with a discrete population and then a moment resisting frame is solved as a supplementary example.

Elastoplastic nonlinear behavior of planar steel gabled frame

  • Moghaddam, Sina Heyrani;Masoodi, Amir R.
    • Advances in Computational Design
    • /
    • v.4 no.4
    • /
    • pp.397-413
    • /
    • 2019
  • In this paper, static nonlinear analysis of gable frame is performed using OpenSees software. Both geometric and material nonlinearities are considered in analyses. To consider large displacements, co-rotational coordinate transformation is used in software. The effects of symmetric and asymmetric support conditions including clamped and simple supports are studied. On the other hand, the material nonlinearity is reflected on analyses using Giuffre-Menegotto-Pinto steel material. Note that strain hardening characteristics are also considered in this model. Moreover, I-shaped cross-section is assumed for all members. The results are provided for different geometry properties of gable frame including shallow and deep inclined roof. It should be added that buckling and post-buckling behaviors of gable frame are investigated using related equilibrium paths. A comparison study is also implemented on the responses of buckling loads obtained for different support and geometry conditions. To trace snap-through paths completely, a displacement control method entitled arc-length is utilized. Findings show the capability of proposed model in nonlinear analysis of gable frames.

Spatial substructure hybrid simulation tests of high-strength steel composite Y-eccentrically braced frames

  • Li, Tengfei;Su, Mingzhou;Sui, Yan
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.715-732
    • /
    • 2020
  • High-strength steel composite Y-eccentrically braced frame (Y-HSS-EBF) is a novel structural system. In this study, the spatial substructure hybrid simulation test (SHST) method is used to further study the seismic performance of Y-HSS-EBF. Firstly, based on the cyclic loading tests of two single-story single-span Y-HSS-EBF planar specimens, a finite element model in OpenSees was verified to provide a reference for the numerical substructure analysis model for the later SHST. Then, the SHST was carried out on the OpenFresco test platform. A three-story spatial Y-HSS-EBF model was taken as the prototype, the top story was taken as the experimental substructure, and the remaining two stories were taken as the numerical substructure to be simulated in OpenSees. According to the test results, the validity of the SHST was verified, and the main seismic performance indexes of the SHST model were analyzed. The results show that, the SHST based on the OpenFresco platform has good stability and accuracy, and the results of the SHST agree well with the global numerical model of the structure. Under strong seismic action, the plastic deformation of Y-HSS-EBF mainly occurs in the shear link, and the beam, beam-columns and braces can basically remain in the elastic state, which is conducive to post-earthquake repair.

Difference analysis of the collapse behaviors of the single-story beam-column assembly and multi-story planar frame

  • Zheng Tan;Wei-Hui Zhong;Bao Meng;Xing-You Yao;Yu-Hui Zheng;Yao Gao;Shi-Chao Duan
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.265-280
    • /
    • 2024
  • The collapse behavior observed in single-story beam-column assembly (SSBCA) do not accurately represent the actual overall stress characteristic of multi-story frame structure (MSFS) under column loss scenario owing to ignoring the interaction action among different stories, leading to a disconnection between the anti-collapse behaviors of "components" and "overall structures", that is, the anti-collapse performance of frame structures with two different structural scales has not yet formed a combined force. This paper conducts a numerical and theoretical study to explore the difference of the collapse behaviors of the SSBCA and MSFS, and further to reveal the internal force relationships and boundary constraints at beam ends of models SSBCA and MSFS. Based on the previous experimental tests, the corresponding refined numerical simulation models were established and verified, and comparative analysis on the resistant-collapse performance was carried out, based on the validated modeling methods with considering the actual boundary constraints, and the results illustrates that the collapse behaviors of the SSBCA and MSFS is not a simple multiple relationship. Through numerical simulation and theoretical analysis, the development laws of internal force in each story beam under different boundary constraints was clarified, and the coupling relationship between the bending moment at the most unfavorable section and axial force in the composite beam of different stories of multi story frames with weld cover-plated flange connections was obtained. In addition, considering the effect of the yield performance of adjacent columns on the anti-collapse bearing capacities of the SSBCA and MSFS during the large deformation stages, the calculation formula for the equivalent axial stiffness at the beam ends of each story were provided.