• 제목/요약/키워드: planar cell

Search Result 213, Processing Time 0.029 seconds

An Experimental Study on the Performance of a Concentrating Photovoltaic Cell as a Function of Temperature (온도에 따른 집광형 태양전지의 성능에 관한 실험적 연구)

  • Shin, Jae-Hyuk;Yi, Seung-Shin;Kim, Sang-Min;Boo, Joon-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.96-101
    • /
    • 2012
  • An experimental study was conducted to investigate the performance of a concentrating photovoltaic cell (CPV) against temperature. It is know that a high efficiency of a CPV can be achieved only with proper cell temperature as well as high concentration ratio (CR). This study is concerned with appropriate cooling condition for a liquid-convection cooler for the best performance of a specific CPV. A series of experiments was conducted in a range of cell temperatures as a result of varying cooling conditions, while the concentration ratio was 390 and the solar irradiation flux was higher than 900 $W/m^2$ in outdoor environment. The CPV had a planar dimension of 10 by 10 mm. A Fresnel lens was used as a concentrator, of which the dimension was 221 mm(W) ${\times}$ 221 mm(L) ${\times}$ 3 mm(t) and the transmissivity was known to be 0.8. The cooler was attached to the bottom side of the CPV and had a contact area of 21 mm(W) ${\times}$ 26 mm(L), which was identical to the size of the base plate of the CPV. The coolant temperature was controlled by an isothermal bath and the flow rate was controlled and measured by a flowmeter. The experimental results showed that the average of power efficiency of the CPV decreased from 28.6 % to 24.7 % as the cell temperature increased from $36^{\circ}C$ to $97^{\circ}C$. An appropriate cooling method of a CPV might increase the power conversion efficiency by about 4% for the same concentration ratio. Discussion is included from the viewpoint of the combined efficiency in addition to the power efficiency.

  • PDF

Effect of Flow Direction on Temperature Uniformity in Solid Oxide Fuel Cell (고체산화물 연료전지의 유동방향에 따른 온도 균일성 영향)

  • Jeon, Dong Hyup;Shin, Dong-Ryul;Ryu, Kwang-Hyun;Song, Rak-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.667-673
    • /
    • 2017
  • We investigated the temperature uniformity in an anode-supported solid oxide fuel cell, using the open source computational fluid dynamics (CFD) toolbox, OpenFOAM. Numerical simulation was performed in three different flow paths, i.e., co-flow, counter-flow, and cross-flow paths. Gas flow in a porous electrode was calculated using effective diffusivity while considering the effect of interconnect rib. A lumped internal resistance model derived from a semi-empirical correlation was implemented for the calculation of electrochemical reaction. The result showed that the counter-flow path displayed the most uniform temperature distribution.

A Study on Thermal Cycle Characteristics of Solid Oxide Fuel Cell (고체 산화물 연료전지의 열사이클 따른 성능 열화 특성 연구)

  • Kim, Eung-Yong;Song, Rak-Hyun;Jeon, Kwang-Sun;Shin, Dong-Ryul;Kang, Thae-Khapp
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1312-1314
    • /
    • 1998
  • SOFC system is often subject to thermal cycle condition during normal start/stop, shutdown, and emergence state. Under the thermal cycle condition of heating and cooling, the SOFC components expand or shrink, which produces thermal stress and thermal shock. The SOFC performance is degraded by the thermal factors. To protect SOFC system from the thermal degradation, the optimum thermal condition must be clarified. In this study, to examine the thermal cycle characteristics, we fabricated single cells of planar SOFC with an area of $5{\times}5cm$. The electrolyte and PEN were tested under thermal cycle conditions in the range of$ 2-8^{\circ}C/min$. After thermal cycle test. crack creation of the components were examined using ultraviolet apparatus. No crack in the electrolyte and PEN were observed. The single cell system with alumina frame were also tested under thermal cycle conditions of 2, 3, $4^{\circ}C/min$. The single cell was fractured at the thermal cycle of 3 and $4^{\circ}C/min$ and the optimum condition of the thermal cycle to be found below $2^{\circ}C/min$.

  • PDF

Fast Planar Shape Deformation using a Layered Mesh (계층 메쉬를 이용한 빠른 평면 형상 변형)

  • Yoo, Kwang-Seok;Choi, Jung-Ju
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.3
    • /
    • pp.43-50
    • /
    • 2011
  • We present a trade-off technique for fast but qualitative planar shape deformation using a layered mesh. We construct a layered mesh that is embedding a planar input shape; the upper-layer is denoted as a control mesh and the other lower-layer as a shape mesh that is defined by mean value coordinates relative to the control mesh. First, we try to preserve some shape properties including user constraints for the control mesh by means of a known existing nonlinear least square optimization technique, which produces deformed positions of the control mesh vertices. Then, we compute the deformed positions of the shape mesh vertices indirectly from the deformed control mesh by means of simple coordinates computation. The control mesh consists of a small number of vertices while the shape layer contains relatively a large number of vertices in order to embed the input shape as tightly as possible. Since the time-consuming optimization technique is applied only to the control mesh, the overall execution is extremely fast; however, the quality of deformation is sacrificed due to the sacrificed quality of the control mesh and its relativity to the shape mesh. In order to change the deformation behavior and consequently to compensate the quality sacrifice, we present a method to control the deformation stiffness by incorporating the orientation into the user constraints. According to our experiments, the proposed technique produces a planar shape deformation fast enough for real-time applications on limited embedded systems such as cell phones and tablet PCs.

Design of the Wideband Microwave Absorber for X-band Applications (X-대역 응용을 위한 광대역 전파 흡수체 설계)

  • Hong, Young-Taek;Jeoung, Gu-Ho;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.9
    • /
    • pp.749-755
    • /
    • 2017
  • In this paper, a wideband microwave absorber for X-band(8~12 GHz) applications is proposed. The structure of the proposed absorber unit cell consists of a resonator with a slot and slit, a backing ground plate, and a Taconic RF-30(${\varepsilon}_r=3$, $tan{\delta}=0.0014$) substrate with a dimension of $8.5{\times}8.5{\times}0.5mm^3$. The proposed absorber has a dual resonance at 9.83 and 10.37 GHz. To demonstrate the operating principle of the proposed absorber structure at each resonance frequency, the simulated current distributions on the unit cell are analyzed. To verify the performance of the proposed absorber, a prototype absorber was fabricated with a planar array of $20{\times}20$ unit cells. The measured results exhibit two absorptivity peaks stronger than 99 % and full-width at half-maximum(FWHM) bandwidth of 1.1 GHz(9.51~10.61 GHz).

The Usefulness of Tc-99m MIBI SPECT in the Localization and the Assessment of Radiotherapy in Non-Small Cell Lung Cancer (비소세포 폐암의 국소화 및 방사선치료 판정에 있어 Tc-99m MIBI SPECT의 유용성)

  • Bom, Hee-Seung;Song, Ho-Chun;Kim, Ji-Yeul;Nam, Taek-Keum;Ahn, Sung-Ja;Chung, Woong-Ki;Nah, Byung-Sik
    • The Korean Journal of Nuclear Medicine
    • /
    • v.28 no.2
    • /
    • pp.186-191
    • /
    • 1994
  • Tc-99m MIBI, a lipophilic cation, was reported as a useful agent for localization of lung cancer. The effect of radiation therapy on the uptake of Tc-99m MIBI in lung cancer, however, was not well evaluated. The aim of the present study was to elucidate the usefulness of Tc-99m MIBI SPECT in the localization and the assessment of radiotherapy in non-small cell lung cancer. Twenty patients(19 males and 1 female, mean age 59, 16 squamous cell ca and 4 adenoca) were studied with Tc-99m MIBI SPECT before radiation therapy. Eleven patients(10 males and 1 female, mean age 59, 8 squamous cell ca and 3 adenoca) were repeated the study 1 month after the completion of radiation therapy(mean dose 6453cGy). All patients showed positive uptakes of Tc-99m MIBI in their tumors. One patient showed a hot uptake in atelectatic area. There was no difference of Tc-99m MIBI uptakes between squamous cell ca and adenoca either on planar or tomographic images. Tc-99m MIBI uptake ratios of squamous cell ca and adenoca were $1.50{\pm}0.16$ and $1.45{\pm}0.15$ on planar images, and $2.73{\pm}0.46$ and $2.54{\pm}0.37$ on tomographic images, respectively. The concordance between radiological change(chest x-ray and CT) and change of Tc-99m MIBI uptakes was 9/11 (81.8% ). In conclusion, Tc-99m MIBI SPECT was useful in the localization of tumor and the assessment of radiation therapy in non-small cell lung cancer.

  • PDF

Development of stacks and power generation systems based on anode-supported SOFCs for intermediate temperature operation (연료극 지지체형 SOFC를 이용한 중.저온용 스택 및 발전시스템 개발)

  • Lee, Tae-hee;Choi, Jin-Hyeok;Park, Tae-Sung;Yoo, Young-Sung;Park, Jin-Woo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1986-1991
    • /
    • 2007
  • KEPRI has studied anode-supported planar SOFCs and kW class stacks operated at intermediate temperature for development of a combined heat and power unit. A single cell composed of Ni-YSZ/FL/ScSZ/LSCF showed the maximum power density of 0.55 W/$cm^2$ at $650^{\circ}C$ and 1.8 W/$cm^2$ at $750^{\circ}C$. With 37 cells of 10${\times}10cm^2$ and stainless steel interconnects, a 1kW class SOFC stack was manufactured. When a 1kW class SOFC system was operated at $750^{\circ}C$ with city gas, it showed the power output of 1.3 kWe at 50 A. It also recuperated heat of 0.57-1.2 kWth according to the loaded current through combustion of unreacted anode off-gas. Recently, KEPRI is developing a new kW class SOFC stack and system to increase efficiency and durability at intermediate temperature.

  • PDF

Metallurgical Refinement of Multicrystalline Silicon by Directional Solidification (일방향 응고법에 의한 다결정 실리콘의 야금학적 정련)

  • Jang, Eunsu;Park, Dongho;Yu, Tae U;Moon, Byung Moon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.111.1-111.1
    • /
    • 2011
  • The solar energy is dramatically increasing as the alternative energy source and the silicon(Si) solar cell are used the most. In this study, the improved process and equipment for the metallurgical refinement of multicrystalline Si were evaluated for the inexpensive solar cell. The planar plane and columnar dendrite aheadof the liquid-solid interface position caused the superior segregation of impurities from the Si. The solidification rate and thermal gradient determined the shape of dendrite in solidified Si matrix solidified by the directional solidification(DS) method. To simulate this equipment, the commercial software, PROCAST, was used to solve the solidification rate and thermal gradient. Si was vertically solidified by the DS system with Stober process and up-graded metallurgical grade or metallurgical grade Si was used as the feedstock. The inductively coupled plasma mass spectrometry (ICP) was used to measure the concentration of impurities in the refined Si ingot. According to the result of ICP and simulation, the high thermal gradient between the two phases wasable to increase the solidification rate under the identical level of refinement. Also, the separating heating zone equipped with the melting and solidification zone was effective to maintain the high thermal gradient during the solidification.

  • PDF

Partially-insulated MOSFET (PiFET) and Its Application to DRAM Cell Transistor

  • Oh, Chang-Woo;Kim, Sung-Hwan;Yeo, Kyoung-Hwan;Kim, Sung-Min;Kim, Min-Sang;Choe, Jeong-Dong;Kim, Dong-Won;Park, Dong-Gun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.1
    • /
    • pp.30-37
    • /
    • 2006
  • In this article, we evaluated the structural merits and the validity of a partially insulated MOSFET (PiFET) through the fabrication of prototype transistors and an 80 nm 512M DDR DRAM with partially-insulated cell array transistors (PiCATs). The PiFETs showed the outstanding short channel effect immunity and off-current characteristics over the conventional MOSFET, resulting from self-induced halo region, self-limiting SID shallow junction, and reduced junction area due to PiOX layer formation. The DRAM with PiCATs also showed excellent data retention time. Thus, the PiFET can be a promising alternative for ultimate scaling of planar MOSFET.

Preliminary study and development of $kW_e$-class liquid fuel based SOFC system (액상 연료 용 $kW_e$급 SOFC 시스템 사전 연구 및 개발)

  • Yoon, Sang-Ho;Kim, Sun-Young;Bae, Joong-Myeon;Baek, Seung-Whan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.21-24
    • /
    • 2008
  • We have developed a $kW_e$ class liquid fuel based solid oxide fuel cell (SOFC) system. Our final target is to develop the 1 $kW_e$ diesel based SOFC system for residential power generator(RPG). In this study, we present the conceptual design of SOFC system. System is composed of hot-box and cold-box. Planar typed SOFC stack, heat exchanger, combustor for stack tail gas, and fuel processor, such as fuel reformer and desulfurizer, are contained in the hot-box. And several balance of plants(BOP), such as fuel suppliers and controller, are contained in the cold-box. Before the SOFC system fabrication, we have already operated the selfsustaining fuel processor, and heat exchange of all heat-related components is simulated using ASPEN HYSYS, because heat maintenance and management in hot-box are important for stable operation of SOFC system. The self-sustained fuel processor was successfully operated for about 250 hours, and heat exchange is enough to operate the SOFC system.

  • PDF