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Abstract—In this article, we evaluated the structural
merits and the validity of a partially insulated MOSFET
(PiFET) through the fabrication of prototype transistors
and an 80 nm 512M DDR DRAM with partially-
insulated cell array transistors (PiCATs). The PiFETs
showed the outstanding short channel effect immunity
and off-current characteristics over the conventional
MOSFET, resulting from self-induced halo region,
self-limiting S/D shallow junction, and reduced
junction area due to PiOX layer formation. The
DRAM with PiCATs also showed excellent data
retention time. Thus, the PiFET can be a promising
alternative for ultimate scaling of planar MOSFET.

Index Terms—PiFET, PiCAT, PiOX, DRAM, partial
SOI, self-induced halo region, self-limiting shallow
junction

1. INTRODUCTION

In the ultimate scaling region of planar MOSFET,
short channel effects (SCEs) seems more and more
difficult to be controlled on bulk silicon[1]. As one of
alternatives, silicon-on-insulator (SOI) based MOSFETs
have emerged as a promising technology to meet these
requirements. Despite the merits of SOI devices such as
self-limited shallow junction, process simplicity, low
power consumption, and fast speed owing to buried
oxide (BOX) layer, SOI devices still suffer from low
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threshold voltage (Vry), floating body, heat dissipation,
and back gate interface problems[2-4]. Most of all, the
poor Vry controllability should be overcome to
implement CMOS logic devices.

As one of the approaches to solve these problems of
bulk and SOI MOSFET and to combine their merits, we
proposed a modified structure, a partially insulated
MOSFET (PiFET) structure having partially insulating
oxide (PiOX) layers under source/drain regions. This
structure has its own structural advantages such as self-
limited shallow source/drain (S/D) junctions and self-
induced halo regions. And also, it can give the good SCE
immunity comparable to SOI MOSFET and the good
Vi controllability comparable to bulk MOSFET
without floating body, heat dissipation, and back-gate
interface problems.

In consideration of DRAM, as the design rule shrinks,
it becomes very difficult to obtain sufficient data
retention time. It is basically due to the high channel
doping concentration to prevent SCEs with shrinking the
feature size. Increased channel doping results in the
increase of electric field and leakage current at the
junction[5, 6]. Thus, using the PiFETs as DRAM cell
transistors, we can achieve good SCE immunity due to
self-limited shallow junction, small leakage current due
to reduced channel doping, and reduced bit-line/word-
line capacitance owing to its structural benefits.

In this work, we evaluate the structural advantages of
the PiFET through the 2-D simulation and demonstrate
its outstanding performance through the fabrication. As
one of PIiFET applications, we introduce a partially-
insulated cell array transistor (PiCAT) for high-density
DRAM products and demonstrate the improved data
retention time characteristics.
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I1. SIMULATION STUDIES

Transistor schematics in Figure 1 show a PiFET in
comparison with the conventional MOSFETs on bulk
silicon and SOI. As shown in the figures, the PiIFET has
self-limited S/D junctions owing to PiOXs and body-tied
channel region. For those three types of structures,
several simulations using TSUPREM4 and MEDICI
were performed in order to investigate the scalability of
PiFET and the role of PiOX.

Firstly, the role of PiOX layer was simulated for a
bulk MOSFET and PiFETs. After thermal annealing, the
PiFET structures showed the self-induced halo region
with higher doping concentration near the edges of PiOX
layers in Figure 2. It was reasoned that the PiOXs act as
diffusion barriers causing the self-limited S/D junctions
and the higher channel doping profiles near the edges of
PiOX layers. The larger the overlapping between gate
and PiOX layers, the higher the doping level near the
edges of PiOX layers.

Secondly, the simulations for scalability were
performed for transistors with the gate oxide thickness
(Tox) of 1.1 nm and the Si body thickness (T) of 17 nm.
From the Vpyroll-off characteristics in Figure 3, it was
confirmed that the PIFET has better scalability over the
bulk MOSFET and much higher Vg over the SOI
MOSFET due to its structural merits.

BOX
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Fig. 1. Transistor schematics; (a) a bulk MOSFET, (b) an SOI
MOSFET, and (c¢) a newly proposed PiFET.
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Fig. 2. Simulation results for self-induced halo regions near
the edges of PiOX layers; (a) a planar MOSFET and PiFETs
with (b) Lp=1.5Lg, (¢} Lp=Lg (doping profiles in (e), (f)), and
(d) Lp=0.5Ls. The LPi is defined as the spacing between the
PiOX layers. From the results, it was confirmed that PiOX
layers make self-limited shallow S/D junctions and self-
induced halo regions near the edges of PiOX layers during
thermal process.
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Fig. 3. Simulation results for Vg roll-off characteristics of a
bulk MOSFET, an SOI MOSFET, and PiFETs.
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I11. DEVICE FABRICATION

The fabrication process of PiFET is shown in Figure 4
and its process flow is as follows. The epitaxial growth
of SiGe and Si layers on Si substrate and the hard mask
deposition of SiO, and Si;Ng layers were firstly
performed before the patterning of partially insulating
(Pi) layer. The Si/SiGe epitaxial layers were etched out
so that the surface of the Si substrate was exposed
(Figure 4 (a)). Then, the masking layers were removed
by wet etch, followed by the Si epitaxial growth (Figure
4 (b)). For the device isolation and the PiOX layer
formation, the conventional shallow trench isolation
(STI) process including pad oxide/SiN mask deposition
and trench etch was carried out. The SiGe layers were
selectively removed using a specially formulated
etchant[7]. As a result, the Si epi-layer sustained by
epitaxially-grown Si layer on substrate was made on the
center of active area (Figure 4 (c)). After the selective
removal of SiGe, oxidation and gap-fill process were
followed to form the PiOX layers under the S/D region.
Finally, the PiFET fabrication was completed by
applying the conventional CMOS process (Figure 4 (d)).

The cross-sectional TEM images of the fabricated
PiFET are shown in Figure 5. The PiOX layers were
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Fig. 4. Process flow of a PiFET; (a) partially insulating (Pi)
layer patterning and etch with mask layers, (b) epitaxial
growth of Si layer after stripping masking layers, (c) trench
etch with active mask layers and SiGe removal, and (d) a
completed PiFET after the conventional CMOS process
including STI process.

(b)

Fig. 5. Cross-sectional views of a newly fabricated PiFET. (a)
The PiOX layers were formed under the source and drain
region, while gate was formed on the body-tied region. (b)
Lattice image shows epitaxially grown Si under the 4.4 nm-
thick gate oxide.

formed under source and drain region and the gate was
formed on the body-tied region, where no defects were
observed owing to the well-optimized pre-cleaning
process before the epitaxial growth.

IV. ELECTRICAL CHARACTERISTICS

To evaluate the Vy controllability and the scalability
of the fabricated PiFETs, the electrical characteristics of
the bulk MOSFETs and the PiFETs for various gate
lengths and Lp;, the spacing between the PiOXs, were
measured by using parameter analyzer, HP4156. The
Ips-Vgs characteristics of the fabricated bulk MOSFETs
and PiFETs with Lg =143 nm and Ly=Lg, Lg =195 nm
and Lp=Lg, and Lg =152 nm and Lp=0.5Lg are shown
in Figure 6 and their key parameters are summarized in
Table 1. According to the results, as the gate length is
smaller and the Ly; is narrower, short channel effects are
effectively suppressed and threshold voltages are
dramatically increased in PiFETs with halo. And also,
the PiFETs even without halo scheme have better SCE
immunity than the bulk MOSFET and the lowest
junction leakage currents among them. But, considering
the Vyy decrease due to the buried oxide layer in SOI
MOSFET, these results may appear to be strange. Even
though the V1y controllability of the PIFETs comparable
to that of bulk MOSFET is considered, much higher Vg
cannot be explained. However, if higher doping
concentration near PiOX layers as shown in simulation
results is considered, these phenomena can be well
explained as the effects of self-induced halo regions
generated during PiOX layer formation and subsequent
thermal process, as well as self-limited shallow S/D
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Table 1. The key electrical parameters of bulk MOSFETs and
PiFETs for gate length and Ly;.

Bulk PiFET PiFET
MOSFET | with halo | w/o halo
Le=143 nm | Vo 0.26 0.62 0.22
Lele DIBL (mV/V) 174 72 69
Swing 104 97 97
(mV/dec.)
Le=195 nm | Vqy 0.36 0.58 0.31
Lp=Le DIBL (mV/V) 61 31 65
Swing 84 88 86
(mV/dec.)
Le=252 nm | Vyy 0.29 0.65 0.45
Lp=0.5Ls | DIBL (mV/V) 26 16 29
Swing 77 96 84
(mVidec.)
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Fig. 6. Ipg-V s characteristics of bulk MOSFETSs and PiFETs with
(a) Lg=143 nm and Lp=Lg, (b) L5=195 nm and Lp=Lg, and (c)
L5=252 nm and Lp=0.5Lg. As the gate length decreases and the
Lp; decreases, short channel effect is effectively suppressed and

Vg is largely increased. These phenomena can be well explained
as the effects of self-induced halo regions due to PiOX layers.

junction. For better understanding, body-bias effects
were measured for the bulk MOSFET and the PiFETs
with Ls=195 nm and Lp=Lg. The PiFETs, sustaining
low off-currents, have large body bias dependency
resulting from increased channel doping due to PiOXs in
comparison with the bulk MOSFET. This result can
become another proof for self-induced halo regions due to
PiOX layers. Figure 8 shows Vg roll-off characteristics of
the bulk MOSFET and the PiFETs with Lp=Lg. The PiFET
without halo implantation shows good roll-off
characteristics comparable to that of bulk MOSFET with
halo implantation. In the Ipg-Vpg charac-teristics in Figure 9,
the PiFET shows the slightly low saturation current of 554
HA/um, while the bulk MOSFET, having lower threshold
voltage, shows the slightly high saturation current of 720
pA/um. However, the PIFET has much more stable on-
currents in saturation regions, giving higher output
impedances. Therefore, these superior short channel effect
(SCE) immunity and off-current characteristics of the
PiFETs mainly resulted from its own structural advantages
such as self-induced halo region, the self-limiting S/D
shallow junction, and the reduced junction area due to
PiOX layer formation.
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Fig. 7. Body-bias effects of bulk MOSFET and PiFETs with Lg
=195 nm and Lp=Lg. The PiFETs have large body bias
dependency. This result can be another proof of self-induced halo
regions due to PiOX layers.
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Fig. 9. Ips-Vps characteristics of a bulk MOSFET and a PiFET

with Lg =143 nm and Lp=Lg. The PiFET shows more stable

currents in saturation regions, meaning higher output impedances.

V. PARTIALLY-INSULATED CELL ARRAY
TRANSISTOR (PiCAT) FOR DRAM APPLICATION

To show the merit of PIFET, low junction leakage
current, we fabricated a 512M DDR DRAM with
partially-insulated cell array transistors (PiCAT). Cell
array transistors are made on the partially insulated
structure, while peripheral and core transistors are made
on epi-Si. Therefore, the peripheral circuit operation is
maintained as the conventional DRAM.

The cross-sectional SEM picture of fully integrated
512M DRAM is shown in Figure 10. The close views of
the PiCAT with 80 nm technology are shown in Figure
11. The channel regions were flattened by optimizing 2™
epi-Si growth process. The PICAT is formed on the 50
nm-thick Si and 46 nm-thick PiOX. The silicon body
thickness is controllable by epi-Si growth process.

The Ips-Vgs and Ips-Vps characteristics of PiCAT are
shown in Figure 12. In spite of using low channel doping,
PiCAT shows the lower DIBL characteristic than the
conventional cell transistor. This improved SCE immunity
is due to the retardation of dopant diffusion in the channel
and the self-limited shallow junction in the source/drain
by PiOX. The evaluation of cell junction leakage current
using defect array test pattern shows that the cell junction
leakage current of PiCAT is 30 % lower than that of the
conventional cell array transistor (Figure 13). Low
junction leakage current results from the self-limiting
shallow junction and reduced junction area. Owing to
these excellent cell array transistor characteristics of
PiCAT, the data retention time is enhanced, compared to
the DRAM with the conventional cell array transistor
(Figure 14). The distributions of bit line/word line
capacitances are compared in Figure 15. Because of the
PiOX layers under B/L contact, smaller bit-line/word-line
capacitances could be obtained than the conventional cell
array transistor by 14 % and 7 %, respectively.

Fig. 10. Vertical struce of a fully integrated 512M DRAM
with PICAT using 80 nm process technology.
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Fig. 11. SEM and TEM images of Pi cell transistor after full
process. PiOXs are located under source and drain. The
thickness of gate oxide is 5.0 nm.
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newly fabricated DRAM shows superior data retention time to
the conventional one due to low junction leakage.
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Fig. 15. Bit-line/word-line capacitances of PiCAT are reduced
due to the PiOX structure.

VI. SUMMARY

We investigated the effects of PiOX layer through the
simulation and evaluated the SCE immunity and the Vg
controllability through the characterization. The PiFETSs
off-current
subthreshold region, good SCE immunity in the linear

showed good characteristics in the
region, and good output impedance in the saturation
region over conventional one. These good performances
mainly resulted from self-induced halo region, self-
limiting S/D shallow junction, and reduced junction area
due to PiOX layer formation. From the fabrication of an
80 nm 512M DRAM with PiCAT, its manufacturability
was confirmed and its better SCE immunity was
reconfirmed. Thus, the PiFET structure is believed to be
one of the most promising candidates as a low power and
high performance transistor in the ultimate scaling
region of planar MOSFET.
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