• 제목/요약/키워드: plain bar

검색결과 55건 처리시간 0.021초

시공방법에 따른 다웰바 시공상태 분석 (Analysis of Dowel Bar Placement Accuracy with Construction Methods)

  • 이재훈;김형배;권순민;권오선
    • 한국도로학회논문집
    • /
    • 제9권2호
    • /
    • pp.101-114
    • /
    • 2007
  • 줄눈 콘크리트 포장에서 다웰바는 하중을 전달해주는 역할과 단차를 감소시켜줌으로써 궁극적으로 포장의 공용성을 높여주는 역할을 수행한다. 그러나 다엘바의 시공상태가 불량할 경우에는 오히려 줄눈잠김 등을 유발하여 스폴링이나 균열을 초래하여 공용성을 떨어뜨릴 수 있다. 다웰바의 시공방법은 다웰바 어셈블리 시공방법과 다웰바자동삽입기를 이용한 시공방법이 있는데 국내에서는 어셈블리를 이용한 시공방법만이 사용되고 있다. 본 연구에서는 비파괴 조사장비인 MIT-SCAN2를 이용하여 한국도로공사 시험도로에 시공된 다웰바자동삽입 시공구간과 다웰바 어셈블리 시공구간에 대한 다웰바 시공상태 및 Joint Score와 Running Ave. Joint Score를 산출하여 비교 분석해 보았다. 그 결과, 다웰바자동삽입 시공방법이 다웰바 어셈블리 시공방법에 비해 깊이변화, 수평/수직엇갈림에서 매우 우수한 시공상태를 보이는 것으로 나타났으며 줄눈잠김의 위험 또한 다웰바 어셈블리 시공방법에 비해 매우 낮다는 점을 발견했다. 또한 국내 다웰바 어셈블리 시공방법의 문제점을 다웰바 어셈블리의 생산, 보관, 시공 측면에서 분석하였다. 문제점 분석을 토대로 다웰바의 체어형태, 고정방법을 개선하여 시험시공을 수행한 결과, 모든 시공상태 항목이 개선되었음을 알 수 있었으며, 특히 수평/수직엇갈림이 크게 개선되어 줄눈잠김에 대한 위험성이 줄어듦을 알 수 있었다.

  • PDF

콘크리트 충전 원형 강관을 이용한 터널강지보 합성부재의 휨거동 평가 (Evaluation of the Flexural Behavior of Composite Beam with Tunnel Steel Rib Support Using Circular Concrete Filled Steel Tube)

  • 마상준;최준혁
    • 한국강구조학회 논문집
    • /
    • 제29권5호
    • /
    • pp.353-359
    • /
    • 2017
  • 본 연구는 콘크리트 충전 강관을 터널의 강지보재로 활용하기 위한 것으로서, 콘크리트 충전강관 부재가 콘크리트 내에 매립되어 합성부재로 거동하는 경우에 대한 부재의 강도와 거동특성을 실험적으로 평가하였다. 이를 위하여 두 종류의 강관과 강관 내부를 일반콘크리트와 기포콘크리트로 충전한 경우, 콘크리트 슬래브에 철근으로 보강한 경우를 대상으로 총 6개의 보 시험체를 제작하였으며 정적 휨시험을 수행하였다. 그 결과, 일반콘크리트로 충전한 강관이 기포콘크리트로 충전한 것보다 더 높은 강도를 나타내었다. 그러나 강관 주변을 철근으로 보강한 경우 휨강도는 충전콘크리트의 종류보다 철근량의 영향이 더 큰 것으로 나타났다.

유동화공법에 의해 제조한 고유동 콘크리트의 시공 및 원가분석 (The Execution and Estimation of Construction Cost of High Fluidity Concrete Applying Flowing Concrete Method)

  • 한민철
    • 한국건축시공학회지
    • /
    • 제4권2호
    • /
    • pp.129-136
    • /
    • 2004
  • High fluidity concrete(HFC) requires high dosage of superplasticizer to acquire sufficient fluidity, and high contents of fine powder and viscosity enhancing admixtures to resist segregation. The use of high amount of admixtures to make HFC at batcher plant in ready mixed concrete company is one of the reasons to raise the manufacturing cost of HFC. For this reason, new type of manufacturing method of HFC are described using both flowing concrete method and segregation reducing superplasticizer(SRS) in order to gain economical profit and offer the convenience for quality control.. As dosage of melamine based superplasticizer increases, it shows that fluidity and bleeding increase, while air contents and ratio of segregation resistance decrease. It also shows that addition of viscosity agent into superplasticizer reduce bleeding and improve segregation resistance of concrete. Dosage of AE agent into superplasticizer containing viscosity agent recovers loss of air contents during flowing procedure. Combination of proper contents of superplasticizer, viscosity agent and AE agent make possible to develope segregation reducing type superplasticizer. Compressive strength of high fluidity concrete applying flowing method with it is higher than that of base concrete. No differences of compressive strength between compacting methods are found. For the estimation of construction cost of high fluidity concreting using segregation reducing type superplasicizer, under same strength levels, although material cost of high fluidity concrete is somewhat higher than that of plain concrete due to segregation reducing type superplasticizer cost, labor cost and equipment cost of high fluidity concrete is cheaper than that of plain concrete. However, based on the strength differences, high fluidity concrete shows lower material cost, labor cost and equipment cost than that of plain concrete due to decreasing in size of member and re-bar caused by high strength development of concrete.

Test of Headed Reinforcement in Pullout

  • Park, Dong-Uk;Hong, Sung-Gul;Lee, Chin-Yong
    • KCI Concrete Journal
    • /
    • 제14권3호
    • /
    • pp.102-110
    • /
    • 2002
  • Results of an experimental study on the pullout behavior of the headed reinforcement are presented. A total of 48 pullout tests was performed to evaluate pullout strengths and load-displacement behaviors in pullout of the headed bars. The square steel heads had gross area of 4 $A_{b}$ and thickness of $d_{b}$ The test program consisted of three pullout test groups: Simple and Edge pullout tests using plain concrete slabs, comparison of pullout performances between the standard hooks and the headed reinforcement, and pullout tests of headed reinforcement using reinforced concrete columns. Test variables included concrete strengths ( $f_{c}$' = 27.1MPa, 39.1MPa), reinforcing bar diameters (D16~D29), embedment depths (6 $d_{b}$~12 $d_{b}$), edge conditions, column reinforcement, and single-vs.-multiple bar pullout. Test results revealed that the heads effectively provided the pullout resistances of the deformed bars in tension. The load-displacement behaviors were similar between the 90-degree hooks and the headed reinforcement. When a multiple number of headed bars installed with small head-to-head spacings was pulled out, reinforcement designed to run across the concrete failure surface in a direction parallel to the headed bars helped improve the pullout performances of the headed reinforcement.t.ement.t.

  • PDF

Numerical analysis of tunnel in rock with basalt fiber reinforced concrete lining subjected to internal blast load

  • Jain, Priyanka;Chakraborty, Tanusree
    • Computers and Concrete
    • /
    • 제21권4호
    • /
    • pp.399-406
    • /
    • 2018
  • The present study focuses on the performance of basalt fiber reinforced concrete (BFRC) lining in tunnel situated in sandstone rock when subjected to internal blast loading. The blast analysis of the lined tunnel is carried out using the three-dimensional (3-D) nonlinear finite element (FE) method. The stress-strain response of the sandstone rock is simulated using a crushable plasticity model which can simulate the brittle behavior of rock and that of BFRC lining is analyzed using a damaged plasticity model for concrete capturing damage response. The strain rate dependent material properties of BFRC are collected from the literature and that of rock are taken from the authors' previous work using split Hopkinson pressure bar (SHPB). The constitutive model performance is validated through the FE simulation of SHPB test and the comparison of simulation results with the experimental data. Further, blast loading in the tunnel is simulated for 10 kg and 50 kg Trinitrotoluene (TNT) charge weights using the equivalent pressure-time curves obtained through hydrocode simulations. The analysis results are studied for the stress and displacement response of rock and tunnel lining. Blast performance of BFRC lining is compared with that of plain concrete (PC) and steel fiber reinforced concrete (SFRC) lining materials. It is observed that the BFRC lining exhibits almost 65% lesser displacement as compared to PC and 30% lesser displacement as compared to SFRC tunnel linings.

지하구조물을 위한 수밀콘크리트의 개발 및 실용화 (Development and Application of Low Permeable Concrete for Underground Structures)

  • 백상현;박성수;박종유;백원준;엄태선;최롱
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.259-262
    • /
    • 1999
  • In underground reinforced concrete structures, such as drainage structure, water and chloride ion penetrated into concrete through the cracks of concrete and its permeable property, cause the corrosion of reinforcing steel bar, which accelerates the expansive cracks and deterioration of concrete. It is necessary to control those deterioration of underground structure by improving its permeability and durability through the reasonable solutions in design, construction and materials. In the present study, fly ash concrete, which has good material properties in long-term period, was compared and studied with plain concrete using ordinary portland cement in terms of fundamental mechanical properties, permeability, drying shrinkage and durability. Also, the mix design and field test of low permeable concrete using fly ash were performed. From this study, fly ash concrete can control the penetration of water and chloride ion effectively by forming dense micro-structure of concrete. Therefore, fly ash concrete may increase the long-term function, performance and serviceability of underground structures.

  • PDF

낙동강 삼각주 북부의 고환경 (The Paleoenvironment of the Northern Part of the Nagdong River Delta)

  • 오건환
    • 한국제4기학회지
    • /
    • 제8권1호
    • /
    • pp.33-42
    • /
    • 1994
  • The study area is filled up by alluvium which can be classified into lower and upper beds by the facies of deposits and their degree of weathering. The lower bed is not of marine but of fluvial. The upper bed is mainly composed of clay and silt or fine sand beds col-ored dark or dark gray which are of neritic or brackish yielding mollusca fossils. The oyster(Crassostrea ariakensis) obstained from the depth of 3m below the present sea level in the upper bed was dated at 4,100 110Y.B.P. and the veneridae(Meretrix lamarck) 1m height above the present delta plain in the old sand bar was dated at 1,700 85Y,B,P. It is therfore concluded that the study area a small kern col of terrestri-al basin prior to postglacial age had experienced the Holocene transgression. Consequently the study area is considered to have been progressively formed under neritic or brackish circumstance before 1,700Y.B.P.

  • PDF

External retrofit of beam-column joints in old fashioned RC structures

  • Adibi, Mahdi;Marefat, Mohammad S.;Arani, Kamyar Karbasi;Zare, Hamid
    • Earthquakes and Structures
    • /
    • 제12권2호
    • /
    • pp.237-250
    • /
    • 2017
  • There has been increasing attention in many countries on seismic retrofit of old fashioned RC structures in recent years. In such buildings, the joints lack transverse reinforcement and suffer inadequate seismic dimensional requirements and the reinforcement is plain bar. The behavior of the joints is governed by sliding of steel bars and diagonal shear failure is less influential. Different methods to retrofit beam-column joints have been proposed in the literature such as wrapping the joint by FRP sheets, enlargement of the beam-column joint, and strengthening the joint by steel sheets. In this study, an enlargement technique that uses external prestressed cross ties with steel angles is examined. The technique has already been used for substructures reinforced by deformed bars and has advantages such as efficient enhancement of seismic capacity and lack of damage to the joint. Three reference specimens and two retrofitted units are tested under increasing lateral cyclic load in combination with two levels of axial load. The reference specimens showed relatively low shear strength of 0.150${\surd}$($f_c$) and 0.30${\surd}$($f_c$) for the exterior and interior joints, respectively. In addition, relatively brittle behavior was observed and large deformations extended into the panel zone of the joints. The retrofit method has increased ductility ratio of the interior beam-column joints by 63%, and energy dissipation capacity by 77%, relative to the control specimen; For external joints, these values were 11%, and 94%. The retrofit method has successfully relocated the plastic joints far from the column face. The retrofit method has improved shear strength of the joints by less than 10%.

비균열 무근콘크리트에 매입된 케미컬 앵커의 전단내력에 관한 실험적 연구 (An Experimental Study on the Shear Strength of Chemical Anchors Embedded into Non Cracking Plain Concrete)

  • 서성연
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권4호
    • /
    • pp.21-29
    • /
    • 2017
  • 최근 건축물의 보수 보강 및 리모델링시 구조부재를 부착시키거나 고정하는데 있어서 시공의 유연성 및 용이성으로 부착식 후설치 앵커의 사용량이 증가하고 있는 실정이다. 그동안 후설치 앵커중 확장식 앵커시스템에 대한 내력평가는 지난 10년간 실험을 통한 연구가 지속되어 설계기준 제정등 어느정도 정립단계에 있으나 부착식 앵커시스템에 대한 해석 및 실험적 연구는 아직 미비한 실정이다. 따라서 현재 우리나라에서는 설계자와 시공자가 신뢰할 수 있는 명확한 설계기준이 없는 상태로서 외국의 설계기준에 의존하고 있는 실정이다. 본 연구에서는 부착식 케미컬 앵커를 대상으로 연단거리 및 앵커간격 그리고 하중방향에 따른 전단실험을 통하여 무근콘크리트에 매입된 케미컬 앵커의 부착강도에 미치는 영향을 규명하고 합리적인 케미컬 앵커의 설계기준 제정을 위한 기초자료를 제공하는 것을 목적으로 한다.

경량기포 콘크리트를 이용한 석재패널 부착 고강도 RC 기둥의 내화 및 폭렬특성 (Properties of the Spalling and Fire Resistance on the High Strength RC Column attached with the Stone Panel Using Lightweight Foamed Concrete)

  • 이동규;백대현;김원기;조용백;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2007년도 추계 학술논문 발표대회
    • /
    • pp.19-22
    • /
    • 2007
  • This study discussed the prevention of the spalling and improvement of the fire resistance performance how to fill up lightweight foamed concrete on high strength RC column attached with the stone panel. The destructive spalling extremely occur caused by sudden high temperature and increased vapor pressure corresponding to falling the ston panel at all RC column, and the steel bar is exposed. The stone panel fall off about 30 minutes and spalling occur about 70 minutes on Plan RC column, fire endurance paint, and fire endurance mortar, so it can be confirmed that fire endurance paint and mortar, which is used as fire endurance material, are not effective. In the other side, it can be protected from fire about $120{\sim}140$ minutes when the lightweight foamed concrete is used as fire endurance material. For the weight loss after the fire test, plain is 33, fire endurance paint is 37%, and fire endurance mortar s 40.7%. And W/B 60%-3 is 53.4%, 60%-1.5 is 40.1%,65%-3 is 39.4%, and 65%-1.5% is 47.1. Overall, the weight loss of the plain is lower than that of the lightweight foamed concrete.

  • PDF