• Title/Summary/Keyword: pixel structure

Search Result 346, Processing Time 0.028 seconds

Soccer Video Highlight Building Algorithm using Structural Characteristics of Broadcasted Sports Video (스포츠 중계 방송의 구조적 특성을 이용한 축구동영상 하이라이트 생성 알고리즘)

  • 김재홍;낭종호;하명환;정병희;김경수
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.727-743
    • /
    • 2003
  • This paper proposes an automatic highlight building algorithm for soccer video by using the structural characteristics of broadcasted sports video that an interesting (or important) event (such as goal or foul) in sports video has a continuous replay shot surrounded by gradual shot change effect like wipe. This shot editing rule is used in this paper to analyze the structure of broadcated soccer video and extracts shot involving the important events to build a highlight. It first uses the spatial-temporal image of video to detect wipe transition effects and zoom out/in shot changes. They are used to detect the replay shot. However, using spatial-temporal image alone to detect the wipe transition effect requires too much computational resources and need to change algorithm if the wipe pattern is changed. For solving these problems, a two-pass detection algorithm and a pixel sub-sampling technique are proposed in this paper. Furthermore, to detect the zoom out/in shot change and replay shots more precisely, the green-area-ratio and the motion energy are also computed in the proposed scheme. Finally, highlight shots composed of event and player shot are extracted by using these pre-detected replay shot and zoom out/in shot change point. Proposed algorithm will be useful for web services or broadcasting services requiring abstracted soccer video.

Integration of the 4.5

  • Lee, Sang-Yun;Koo, Bon-Won;Jeong, Eun-Jeong;Lee, Eun-Kyung;Kim, Sang-Yeol;Kim, Jung-Woo;Lee, Ho-Nyeon;Ko, Ick-Hwan;Lee, Young-Gu;Chun, Young-Tea;Park, Jun-Yong;Lee, Sung-Hoon;Song, In-Sung;Seo, O-Gweon;Hwang, Eok-Chae;Kang, Sung-Kee;Pu, Lyoung-Son;Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.537-539
    • /
    • 2006
  • We developed an 4.5" $192{\times}64$ active matrix organic light-emitting diode display on a glass using organic thin-film transistor (OTFT) switching-arrays with two transistors and a capacitor in each sub-pixel. The OTFTs has bottom contact structure with a unique gate insulator and pentacene for the active layer. The width and length of the switching OTFT is $800{\mu}m$ and $10{\mu}m$ respectively and the driving OTFT has $1200{\mu}m$ channel width with the same channel length. On/off ratio, mobility, on-current of switching OTFT and on-current of driving OTFT were $10^6,0.3{\sim}0.5\;cm^2/V{\cdot}sec$, order of 10 ${\mu}A$ and over 100 ${\mu}A$, respectively. AMOLEDs composed of the OTFT switching arrays and OLEDs made using vacuum deposition method were fabricated and driven to make moving images, successfully.

  • PDF

An Effective Method to Treat The Boundary Pixels for Image Compression with DWT (DWT를 이용한 영상압축을 위한 경계화소의 효과적인 처리방법)

  • 서영호;김종현;김대경;유지상;김동욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6A
    • /
    • pp.618-627
    • /
    • 2002
  • In processing images using 2 dimensional Discrete Wavelet Transform(2D-DWT), the method to process the pixels around the image boundary may affect the quality of image and the cost to implement in hardware and software. This paper proposed an effective method to treat the boundary pixels, which is apt to implement in hardware and software without losing the quality of the image costly. This method processes the 2-D image as 1-D array so that 2-D DWT is performed by considering the image with the serial-sequential data structure (Serial-Sequential Processing). To show the performance and easiness in implementation of the proposed method, an image compression codec which compresses image and reconstructs it has been implemented and experimented. It included log-scale fried quantizer, but the entropy coder was not implemented. From the experimental results, the proposed method showed the SNR of almost the same SNR(Signal to Noise Ratio) to the Periodic Expansion(PE) method when the compression ratio(excluding entropy coding) of 2:1, 15.3% higher than Symmetric Expansion(SE) method, and 9.3% higher than 0-pixel Padding Expansion(ZPE) method. Also PE method needed 12.99% more memory space than the proposed method. By considering only the compression process, SE and ZPE methods needed additional operations than the proposed one. In hardware implementation, the proposed method in this paper had 5.92% of overall circuit as the control circuit, while SE, PE, and ZPE method has 22%, 21,2%, and 11.9% as the control circuit, respectively. Consequently, the proposed method can be thought more effective in implementing software and hardware without losing any image quality in the usual image processing applications.

Multi-stage Image Restoration for High Resolution Panchromatic Imagery (고해상도 범색 영상을 위한 다중 단계 영상 복원)

  • Lee, Sanghoon
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.551-566
    • /
    • 2016
  • In the satellite remote sensing, the operational environment of the satellite sensor causes image degradation during the image acquisition. The degradation results in noise and blurring which badly affect identification and extraction of useful information in image data. Especially, the degradation gives bad influence in the analysis of images collected over the scene with complicate surface structure such as urban area. This study proposes a multi-stage image restoration to improve the accuracy of detailed analysis for the images collected over the complicate scene. The proposed method assumes a Gaussian additive noise, Markov random field of spatial continuity, and blurring proportional to the distance between the pixels. Point-Jacobian Iteration Maximum A Posteriori (PJI-MAP) estimation is employed to restore a degraded image. The multi-stage process includes the image segmentation performing region merging after pixel-linking. A dissimilarity coefficient combining homogeneity and contrast is proposed for image segmentation. In this study, the proposed method was quantitatively evaluated using simulation data and was also applied to the two panchromatic images of super-high resolution: Dubaisat-2 data of 1m resolution from LA, USA and KOMPSAT3 data of 0.7 m resolution from Daejeon in the Korean peninsula. The experimental results imply that it can improve analytical accuracy in the application of remote sensing high resolution panchromatic imagery.

Hepatic Vessel Segmentation using Edge Detection (Edge Detection을 이용한 간 혈관 추출)

  • Seo, Jeong-Joo;Park, Jong-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.3
    • /
    • pp.51-57
    • /
    • 2012
  • Hepatic vessel tree is the key structure for hepatic disease diagnosis and liver surgery planning. Especially, it is used to evaluate the donors' and recipients' liver for the LDLT(Living Donors Liver Transplantation) and estimate the volumes of left and right hepatic lobes for securing their life in the LDLT. In this study, we propose a method to apply canny edge detection that is not affected by noise to the liver images for automatic segmentation of hepatic vessels tree in contrast abdominal MDCT image. Using histograms and average pixel values of the various liver CT images, optimized parameters of the Canny algorithm are determined. It is more time-efficient to use the common parameters than to change parameters manually according to CT images. Candidates of hepatic vessels are extracted by threshold filtering around the detected the vessel edge. Finally, using a system which detects the true-negatives and the false-positives in horizontal and vertical direction, the true-negatives are added in candidate of hepatic vessels and the false-positives are removed. As a result of the process, the various hepatic vessel trees of patients are accurately reconstructed in 3D.

Real-Time Vehicle License Plate Recognition System Using Adaptive Heuristic Segmentation Algorithm (적응 휴리스틱 분할 알고리즘을 이용한 실시간 차량 번호판 인식 시스템)

  • Jin, Moon Yong;Park, Jong Bin;Lee, Dong Suk;Park, Dong Sun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.9
    • /
    • pp.361-368
    • /
    • 2014
  • The LPR(License plate recognition) system has been developed to efficient control for complex traffic environment and currently be used in many places. However, because of light, noise, background changes, environmental changes, damaged plate, it only works limited environment, so it is difficult to use in real-time. This paper presents a heuristic segmentation algorithm for robust to noise and illumination changes and introduce a real-time license plate recognition system using it. In first step, We detect the plate utilized Haar-like feature and Adaboost. This method is possible to rapid detection used integral image and cascade structure. Second step, we determine the type of license plate with adaptive histogram equalization, bilateral filtering for denoise and segment accurate character based on adaptive threshold, pixel projection and associated with the prior knowledge. The last step is character recognition that used histogram of oriented gradients (HOG) and multi-layer perceptron(MLP) for number recognition and support vector machine(SVM) for number and Korean character classifier respectively. The experimental results show license plate detection rate of 94.29%, license plate false alarm rate of 2.94%. In character segmentation method, character hit rate is 97.23% and character false alarm rate is 1.37%. And in character recognition, the average character recognition rate is 98.38%. Total average running time in our proposed method is 140ms. It is possible to be real-time system with efficiency and robustness.

Low Complexity Video Encoding Using Turbo Decoding Error Concealments for Sensor Network Application (센서네트워크상의 응용을 위한 터보 복호화 오류정정 기법을 이용한 경량화 비디오 부호화 방법)

  • Ko, Bong-Hyuck;Shim, Hyuk-Jae;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.1
    • /
    • pp.11-21
    • /
    • 2008
  • In conventional video coding, the complexity of encoder is much higher than that of decoder. However, as more needs arises for extremely simple encoder in environments having constrained energy such as sensor network, much investigation has been carried out for eliminating motion prediction/compensation claiming most complexity and energy in encoder. The Wyner-Ziv coding, one of the representative schemes for the problem, reconstructs video at decoder by correcting noise on side information using channel coding technique such as turbo code. Since the encoder generates only parity bits without performing any type of processes extracting correlation information between frames, it has an extremely simple structure. However, turbo decoding errors occur in noisy side information. When there are high-motion or occlusion between frames, more turbo decoding errors appear in reconstructed frame and look like Salt & Pepper noise. This severely deteriorates subjective video quality even though such noise rarely occurs. In this paper, we propose a computationally extremely light encoder based on symbol-level Wyner-Ziv coding technique and a new corresponding decoder which, based on a decision whether a pixel has error or not, applies median filter selectively in order to minimize loss of texture detail from filtering. The proposed method claims extremely low encoder complexity and shows improvements both in subjective quality and PSNR. Our experiments have verified average PSNR gain of up to 0.8dB.

A Design of AES-based WiBro Security Processor (AES 기반 와이브로 보안 프로세서 설계)

  • Kim, Jong-Hwan;Shin, Kyung-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.7 s.361
    • /
    • pp.71-80
    • /
    • 2007
  • This paper describes an efficient hardware design of WiBro security processor (WBSec) supporting for the security sub-layer of WiBro wireless internet system. The WBSec processor, which is based on AES (Advanced Encryption Standard) block cipher algorithm, performs data oncryption/decryption, authentication/integrity, and key encryption/decryption for packet data protection of wireless network. It carries out the modes of ECB, CTR, CBC, CCM and key wrap/unwrap with two AES cores working in parallel. In order to achieve an area-efficient implementation, two design techniques are considered; First, round transformation block within AES core is designed using a shared structure for encryption/decryption. Secondly, SubByte/InvSubByte blocks that require the largest hardware in AES core are implemented using field transformation technique. It results that the gate count of WBSec is reduced by about 25% compared with conventional LUT (Look-Up Table)-based design. The WBSec processor designed in Verilog-HDL has about 22,350 gates, and the estimated throughput is about 16-Mbps at key wrap mode and maximum 213-Mbps at CCM mode, thus it can be used for hardware design of WiBro security system.

A Study of Usefulness for Megavoltage Computed Tomography on the Radiation Treatment Planning (메가볼트 에너지 전산화 단층 촬영을 이용한 치료계획의 유용성 연구)

  • Cho, Jeong-Hee;Kim, Joo-Ho;Khang, Hyun-Soo;Lee, Jong-Seok;Yoo, Beong-Gyu
    • Journal of radiological science and technology
    • /
    • v.33 no.4
    • /
    • pp.369-378
    • /
    • 2010
  • The purpose of this study was to investigate image differences between KVCT vs MVCT depending on a high densities metal included in the phantom and to analyze the r values for the purpose of the dose differences between each methods. We verified the possibilities for clinical indications that using MVCT is available for the radiation therapy treatment planning. Cheese phantom was used to get a density table for each CT and CT sinogram data was transferred to radiation planning computer through DICOM_RT. Using this data, the treatment dose plan has been calculated in RTP system. We compared the differences of r values between calculated and measured values, and then applied this data to the real patient's treatment planning. The contrast of MVCT image was superior to KVCT. In KVCT, each pixel which has more than 3.0 of density was difficult to be differentiated, but in MVCT, more than 5.0 density of pixels were distinguished clearly. With the normal phantom, the percentage of the case which has less than 1($r\leq1$, acceptable criteria) of gamma value, was 94.92% for KVCT and 93.87% for MVCT. But with the cheese phantom, which has high density plug, the percentage was 88.25% for KVCT and 93.77% for MVCT respectively. MVCT has many advantages than KVCT. Especially, when the patient has high density metal, such as total hip arthroplasty, MVCT is more efficient to define the anatomical structure around the high density implants without any artifacts. MVCT helps to calculate the treatment dose more accurately.

Reduction of Spectral Distortion in PAN-sharpening Using Spectral Adjustment and Anisotropic Diffusion (분광 조정과 비등방성 확산에 의한 PAN-Sharpened 영상의 분광 왜곡 완화)

  • Lee, Sanghoon
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.571-582
    • /
    • 2015
  • This paper proposes a scheme to reduce spectral distortion in PAN-sharpening which produces a MultiSpectral image (MS) with the higher resolution of PANchromatic image (PAN). The spectral distortion results from reconstructing spatial details of PAN image in the MS image. The proposed method employs Spectral Adjustment and Anisotropic Diffusion to make a reduction of the distortion. The spectral adjustment makes the PAN-sharpened image agree with the original MS image, but causes block distortion because the spectral response of a pixel in the lower resolution is assumed to be equal to the average response of the pixels belonging to the corresponding area in the higher resolution at a same wavelength. The block distortion is corrected by the anisotropic diffusion which uses a conduct coefficient estimating from a local computation of PAN image. It results in yielding a PAN-sharpened image with the spatial structure of PAN image. GSA is one of PAN-sharpening techniques which are efficient in computation as well as good in quantitative quality evaluation. This study suggests the GSA as a preliminary PAN-sharpening method. Two data sets were used in the experiment to evaluate the proposed scheme. One is a Dubaisat-2 image of $1024{\times}1024$ observed at Los Angeles area, USA on February, 2014, the other is an IKONOS of $2048{\times}2048$ observed at Anyang, Korea on March, 2002. The experimental results show that the proposed scheme yields the PAN-sharpened images which have much less spectral distortion and better quantitative quality evaluation.