A Study of Usefulness for Megavoltage Computed Tomography on the Radiation Treatment Planning

메가볼트 에너지 전산화 단층 촬영을 이용한 치료계획의 유용성 연구

  • Cho, Jeong-Hee (Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University Health System) ;
  • Kim, Joo-Ho (Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University Health System) ;
  • Khang, Hyun-Soo (Department of Radiologic Technology, Eulji University) ;
  • Lee, Jong-Seok (Department of Radiotechnology, Wonkwang Health Science University) ;
  • Yoo, Beong-Gyu (Department of Radiotechnology, Wonkwang Health Science University)
  • 조정희 (연세의료원 암센터 방사선종양학과) ;
  • 김주호 (연세의료원 암센터 방사선종양학과) ;
  • 강현수 (을지대학교 방사선학과) ;
  • 이종석 (원광보건대학 방사선과) ;
  • 유병규 (원광보건대학 방사선과)
  • Received : 2010.10.31
  • Accepted : 2010.12.08
  • Published : 2010.12.31

Abstract

The purpose of this study was to investigate image differences between KVCT vs MVCT depending on a high densities metal included in the phantom and to analyze the r values for the purpose of the dose differences between each methods. We verified the possibilities for clinical indications that using MVCT is available for the radiation therapy treatment planning. Cheese phantom was used to get a density table for each CT and CT sinogram data was transferred to radiation planning computer through DICOM_RT. Using this data, the treatment dose plan has been calculated in RTP system. We compared the differences of r values between calculated and measured values, and then applied this data to the real patient's treatment planning. The contrast of MVCT image was superior to KVCT. In KVCT, each pixel which has more than 3.0 of density was difficult to be differentiated, but in MVCT, more than 5.0 density of pixels were distinguished clearly. With the normal phantom, the percentage of the case which has less than 1($r\leq1$, acceptable criteria) of gamma value, was 94.92% for KVCT and 93.87% for MVCT. But with the cheese phantom, which has high density plug, the percentage was 88.25% for KVCT and 93.77% for MVCT respectively. MVCT has many advantages than KVCT. Especially, when the patient has high density metal, such as total hip arthroplasty, MVCT is more efficient to define the anatomical structure around the high density implants without any artifacts. MVCT helps to calculate the treatment dose more accurately.

고밀도 물질의 존재에 따른 킬로볼트 및 메가볼트 에너지 전산화 단층촬영(kilovoltage & megavoltagecomputed tomography, KVCT & MVCT) 영상의 아티팩트 차이를 비교하기 위하여 Cheese 팬텀을 사용하여 KVCT와 MVCT로 얻은 영상자료를 통해 밀도변화에 따른 HU값의 변화를 비교하였다. 또한 각 영상의 sinogram 자료를 치료계획 장비에 입력 후 시행하여 치료선량에 변화 여부와 조사면내 계산값과 실측값간의 차이를 r값으로 비교분석하였으며 이에 대한 실제 환자에 적용하여 임상적용에 관한 유용성을 검정하였다. KVCT와 MVCT간에 HU값 차이는 KVCT의 밀도 3.0에서 역치를 보여 변화가 없었으나 MVCT에서는 밀도 5.0 이상도 구별하는 것을 관찰할 수 있었다. 각 방법의 Sinogram 정보를 통해 일반팬텀으로 계산한 결과 r 값이 허용오차인 1보다 낮은 비율은 KVCT와 MVCT에서 각각 94.92%, 93.87%로 큰 차이를 보이지 않았으나 고밀도팬텀을 이용해 아티팩트가 존재하는 자료를 이용한 선량계산의 결과는 KVCT와 MVCT에서 각각 88.25%와 93.77%로 다소 차이를 보였다. MVCT 이용 시에는 아티팩트가 거의 나타나지 않았고 고밀도 물질의 윤곽을 정확히 알 수 있었으며 상대적으로 선량계산의 정확성이 향상되어 척추궁 절제술 후 인공보형물이 삽입된 척추종양과 같이 결정장기와 종양이 인접한 환자에 있어서도 MVCT영상자료를 이용하여 선량 계산 시 보다 정확한 치료계획이 가능하리라 사료된다.

Keywords

References

  1. Hsieh J. M: Medical CT and ultrasound current technology and application Madison, Adanced Medical Publishing, 487-518, 1995
  2. Chris Constaninou, James C, Harrington et al.: An electron density calibration phantom for C-T based treatment planning computers, Medical Physics, 19(2), 325-327, 1992 https://doi.org/10.1118/1.596862
  3. Ahnesj A.: Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media, Medical Physics, 16, 577-92, 1989 https://doi.org/10.1118/1.596360
  4. O'Connor J.: The variation for scattered x-rays with density in an irradiated body, Phys. Med. Biol, 352-69, 1957
  5. Wang G, Frei T, Vannier MW: A fast iterative algorithm for metal artifact reduction in X-ray CT, Acad Radiol, 7, 607-614, 2000 https://doi.org/10.1016/S1076-6332(00)80576-0
  6. Zhao S, Robertson DD, Wang G: X-ray CT metal artifact reduction using wavelets: An application for imaging total hip prosthesis, IEEE Transact Med. Imaging, 1, 1238-1247, 2000
  7. Kalender WA, Hebel R, Ebersberger J: Reduction of CT artifacts caused by metallic implants, Radiology, 164, 576-577, 1987 https://doi.org/10.1148/radiology.164.2.3602406
  8. Daniel A. Low, William B, Harms, S. Mutic et al.: A technique for the quantitative evaluation of dose distributions, Medical Physics, 25(5), 1998
  9. M.J.Butson, Peter K.N.Yu, Tsang Cheung et al.: Energy response of the new E BT2 radiochromic film to x-ray radiation, Radiation measurements, 45, 836-839, 2010 https://doi.org/10.1016/j.radmeas.2010.02.016
  10. Florian S, Jorn Kalz, Gabriele S. Perez et al.: Megavoltage CT in Helical Tomotherapy-Clinical Advantage and Limitations of Special Physical Characteristics, Technology in Cancer Reserch and Treatment, 8(5), 343-352, 2009 https://doi.org/10.1177/153303460900800504
  11. A.P. Shah, K.M. Langen, K.Ruchala et al.: Patient-specific Dose From Megavoltage CT Imaging With a Helical Tomotherapy Unit, Int. J. Rad. Onccol. Bio. Phys, 69(3), S193-S194, 2007
  12. S.D. Thomas, M. Mackenzie, G.C. Field et al: Patient specific treatment verifications for helical tomotherapy treatment plans, Med. Phys, 32(12), 3793-3800, 2005 https://doi.org/10.1118/1.2134929
  13. ICRU 42, Use of computers in external beam radiotherapy procedures with high energy photons and electrons, 1987
  14. Hong T.S, Welsh, J.S, Riter et al.: Megavoltage computed tomotherapy: an emerging tool for image guided radiotherapy, Am J Clin Oncol, 30, 617-623, 2007 https://doi.org/10.1097/COC.0b013e3180546770
  15. Smeenk, C,Gaede S. Battista et al.: Delineation of moving targets with slow MVCT scans: implication for adaptive non-gated lung tomotherapy, Phys Med Biol, 52, 1119, 2007 https://doi.org/10.1088/0031-9155/52/4/017