• Title/Summary/Keyword: pixel intensity

Search Result 286, Processing Time 0.021 seconds

Pixel Intensity Histogram Method for Unresolved Stars: Case of the Arches Cluster

  • Shin, Jihye;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.58.2-58.2
    • /
    • 2014
  • The Arches cluster is a young (2-4 Myr), compact (~1 pc), and massive (${\sim}2{\times}10^4M_{\odot}$) star cluster located ~30 pc away from the Galactic center (GC) in projection. Being exposed to the extreme environment of the GC such as elevated temperature and turbulent velocities in the molecular clouds, strong magnetic fields, and larger tidal forces, the Arches cluster is an excellent target for understanding the effects of star-forming environment on the initial mass function (IMF) of the star cluster. However, resolving stars fainter than ~1 $M_{\odot}$ in the Arches cluster partially will have to wait until an extremely large telescope with adaptive optics in the infrared is available. Here we devise a new method to estimate the shape of the low-end mass function where the individual stars are not resolved, and apply it to the Arches cluster. This method involves histograms of pixel intensities in the observed images. We find that the initial mass function of the Arches cluster should not be too different from that for the Galactic disk such as the Kroupa IMF.

  • PDF

Fog degree measurement based on patch property of defogging algorithm (안개 제거 알고리즘의 patch 특성을 이용한 안개 량 측정)

  • Lee, geun min;Kim, won ha
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.11a
    • /
    • pp.125-126
    • /
    • 2014
  • 안개 제거 알고리즘은 single image에서 대기값(Airlight)와 대기의 빛 전달량(Transmission)을 추정하여 안개로 인한 빛의 산란에 의해 생긴 Contrast 감소 및 채도의 왜곡과 같은 영상 왜곡을 보정해줌으로써 안개 영상에서 안개를 효과적으로 제거해준다. 하지만 기존의 안개 제거 알고리즘은 안개 영상에 특화되었기 때문에 안개가 없는 영상에 알고리즘을 시행 할 경우 색상과 명암에 왜곡을 불러 일으킬 수 있다. 이에 따라 알고리즘을 수행하기 앞서 안개 량을 측정하고 그 결과에 따라 안개 제거 알고리즘에 제거 정도 가중치나 알고리즘 수행 여부를 판단할 필요가 있다. 본 논문은 기존 안개 제거 알고리즘들이 영상의 patch를 사용하여 빛 전달량(Transmission)을 추정한다는 것을 이용하여 빛 전달량을 구함과 동시에 안개 량을 판단하는 알고리즘을 개발하였다. 안개량을 측정하기 위해 각 patch의 pixel 분포 특성과 patch의 빛 전달량(Transmission)을 구하기 위한 특정 값과 실제 pixel의 명암(Intensity)을 비교하여 안개 량을 측정한다.

  • PDF

FAST PHONG SHADING BASED ON TABLE LOOKUP

  • Lu, Hsien-Chang;Dai, Wen-Kai
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.145.1-149
    • /
    • 1999
  • In Computer Graphics, Phong shading algorithm is essential and also sufficient for producing realistic images. In this paper, we propose an approach taking only two additions and one memory access for shading a pixel. A Phong-Shading table is used for storing the values of diffuse and specular components of the Phong reflection model. The intensity of a pixel can be obtained by table lookup. The performance of proposed method is almost the same as Gouraud shading.

Data Fusion Using Image Segmentation in High Spatial Resolution Satellite Imagery

  • Lee, Jong-Yeol
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.283-285
    • /
    • 2003
  • This paper describes a data fusion method for high spatial resolution satellite imagery. The pixels located around an object edge have spectral mixing because of the geometric primitive of pixel. The larger a size of pixel is, the wider an area of spectral mixing is. The intensity of pixels adjacent edges were modified by the spectral characteristics of the pixels located inside of objects. The methods developed in this study were tested using IKONOS Multispectral and Pan data of a part of Jeju-shi in Korea. The test application shows that the spectral information of the pixels adjacent edges were improved well.

  • PDF

Basic Examination on 3D Measuring System Using Pulse-Compression

  • Fujimoto Ikumatsu;Ando Shigeru
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.60-66
    • /
    • 2005
  • In this paper, we propose the basic measurement method of a 3D digitizer using a CCD camera in detail. In the localization measurement with a CCD camera, the effect of the background light and the sensitivity consideration are always problems in realizing a high precision. In this research, a new measurement principle is proposed in which the pulse compression technique known in radar is used to eliminate the effect of background light even under a low intensity light source, and the coordinate values on the CCD camera image plane are determined accurately. From the quantitative evaluation of the S/N ratio improvement and the fundamental experiment, it is verified that a substantial improvement in the S/N ratio is realized for both the background noise and the pixel noise and that a resolution of less than the pixel is sufficiently possible.

Performance Evaluation of Pixel Clustering Approaches for Automatic Detection of Small Bowel Obstruction from Abdominal Radiographs

  • Kim, Kwang Baek
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.3
    • /
    • pp.153-159
    • /
    • 2022
  • Plain radiographic analysis is the initial imaging modality for suspected small bowel obstruction. Among the many features that affect the diagnosis of small bowel obstruction (SBO), the presence of gas-filled or fluid-filled small bowel loops is the most salient feature that can be automatized by computer vision algorithms. In this study, we compare three frequently applied pixel-clustering algorithms for extracting gas-filled areas without human intervention. In a comparison involving 40 suspected SBO cases, the Possibilistic C-Means and Fuzzy C-Means algorithms exhibited initialization-sensitivity problems and difficulties coping with low intensity contrast, achieving low 72.5% and 85% success rates in extraction. The Adaptive Resonance Theory 2 algorithm is the most suitable algorithm for gas-filled region detection, achieving a 100% success rate on 40 tested images, largely owing to its dynamic control of the number of clusters.

Compression-friendly Image Encryption Algorithm Based on Order Relation

  • Ganzorig Gankhuyag;Yoonsik Choe
    • Journal of Internet Technology
    • /
    • v.21 no.4
    • /
    • pp.1013-1024
    • /
    • 2020
  • In this paper, we introduce an image encryption algorithm that can be used in combination with compression algorithms. Existing encryption algorithms focus on either encryption strength or speed without compression, whereas the proposed algorithm improves compression efficiency while ensuring security. Our encryption algorithm decomposes images into pixel values and pixel intensity subsets, and computes the order of permutations. An encrypted image becomes unpredictable after permutation. Order permutation reduces the discontinuity between signals in an image, increasing compression efficiency. The experimental results show that the security strength of the proposed algorithm is similar to that of existing algorithms. Additionally, we tested the algorithm on the JPEG and the JPEG2000 with variable compression ratios. Compared to existing methods applied without encryption, the proposed algorithm significantly increases PSNR and SSIM values.

One Idea on a Three Dimensional Measuring System Using Light Intensity Modulation

  • Fujimoto Ikumatsu;Cho In-Ho;Pak Jeong-Hyeon;Pyoun Young-Sik
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.130-136
    • /
    • 2005
  • A new optical digitizing system for determining the position of a cursor in three dimensions(3D) and an experimental device for its measurement are presented. A semi-passive system using light intensity modulation, a technology that is well known in radar ranging, is employed in order to overcome precision limitations imposed by background light. This system consists of a charge-coupled device camera placed before a rotating mirror and a light-emitting diode whose intensity is modulated. Using a Fresnel pattern for light modulation, it is verified that a substantial improvement of the signal to noise ratio is realized for the background noise and that a resolution of less than a single pixel can be achieved. This opens the doorway to the realization of high precision 3D digitized measurement. We further propose that a 3D position measurement with a monocular optical system can be realized by a numerical experiment if a linear-period modulated waveform is adopted as the light-modulating one.

Speckle Removal of SAR Imagery Using a Point-Jacobian Iteration MAP Estimation

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.1
    • /
    • pp.33-42
    • /
    • 2007
  • In this paper, an iterative MAP approach using a Bayesian model based on the lognormal distribution for image intensity and a GRF for image texture is proposed for despeckling the SAR images that are corrupted by multiplicative speckle noise. When the image intensity is logarithmically transformed, the speckle noise is approximately Gaussian additive noise, and it tends to a normal probability much faster than the intensity distribution. MRFs have been used to model spatially correlated and signal-dependent phenomena for SAR speckled images. The MRF is incorporated into digital image analysis by viewing pixel types as slates of molecules in a lattice-like physical system defined on a GRF Because of the MRF-SRF equivalence, the assignment of an energy function to the physical system determines its Gibbs measure, which is used to model molecular interactions. The proposed Point-Jacobian Iterative MAP estimation method was first evaluated using simulation data generated by the Monte Carlo method. The methodology was then applied to data acquired by the ESA's ERS satellite on Nonsan area of Korean Peninsula. In the extensive experiments of this study, The proposed method demonstrated the capability to relax speckle noise and estimate noise-free intensity.

fMRI of Visual and Motor Stimuli : Difference of Total Activation Depends on Stimulation Paradigm (시각과 운동의 뇌기능영상 : 자극에 따른 총활성화의 차이)

  • 정순철;송인찬;장기현;유병기;문치웅;조장희
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.1
    • /
    • pp.41-46
    • /
    • 1999
  • Purpose : To investigate the difference of total activation in visual area, motor area, and cerebellum according to the stimulation paradigm. Materials and Methods : Functional MR imaging was performed in 5 healthy volunteers with visual and motor activity using EPI technique. LED and Checker-Board stimulation were performed for visual activity. Thumb motion and Finger Tapping were performed for motor and cerebellum activity. Stimulus timing was 60sec. off, 120sec. on, 60sec. off. Data processing was carried out by using the cross-correlation method for each pixel. Each pixel was then selected and assumed activated if the correlation coefficient was equal or larger than a threshold value. Time course data was obtained by calculating the total activation which was defined as the number of activated pixel x averaged pixel intensity. Results : In the case of visual activity with LED stimulation, we found increased total activity of more than 100% compared with Checker-Board stimulation. In the case of motor area and cerebellum with Finger tapping stimulation, we found increased total activity of more than 10% and 150%, respectively compared with Thumb motion stimulation.

  • PDF