Browse > Article
http://dx.doi.org/10.7780/kjrs.2007.23.1.33

Speckle Removal of SAR Imagery Using a Point-Jacobian Iteration MAP Estimation  

Lee, Sang-Hoon (Kyungwon University)
Publication Information
Korean Journal of Remote Sensing / v.23, no.1, 2007 , pp. 33-42 More about this Journal
Abstract
In this paper, an iterative MAP approach using a Bayesian model based on the lognormal distribution for image intensity and a GRF for image texture is proposed for despeckling the SAR images that are corrupted by multiplicative speckle noise. When the image intensity is logarithmically transformed, the speckle noise is approximately Gaussian additive noise, and it tends to a normal probability much faster than the intensity distribution. MRFs have been used to model spatially correlated and signal-dependent phenomena for SAR speckled images. The MRF is incorporated into digital image analysis by viewing pixel types as slates of molecules in a lattice-like physical system defined on a GRF Because of the MRF-SRF equivalence, the assignment of an energy function to the physical system determines its Gibbs measure, which is used to model molecular interactions. The proposed Point-Jacobian Iterative MAP estimation method was first evaluated using simulation data generated by the Monte Carlo method. The methodology was then applied to data acquired by the ESA's ERS satellite on Nonsan area of Korean Peninsula. In the extensive experiments of this study, The proposed method demonstrated the capability to relax speckle noise and estimate noise-free intensity.
Keywords
SAR; Despeckling; Multiplicative Noise; Log-normal Distribution; MRF; Point-Jacobian; Iteration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chellappa, R. and S. Chatterjee, 1985. Classification of textures using Gaussian Markov random fields. IEEE Trans. Acoustics,Speech, and Signal Proc., 33: 959-963   DOI
2 Frankot, R. T. and R. Chellapa, 1987. Lognormal random-field models and their applications to radar image synthesis. IEEE Trans. Geosci. Remote Sens., 25: 195-207   DOI   ScienceOn
3 Goodman, J. W., 1976. Some fundamental properties of speckle. J. Opt. Soc. Amer., 66: 1145-1150   DOI
4 Lopes, A., E. Nezry, R. Touzi, and H. Laur, 1993. Structure detection and statistical adaptive speckle in SAR images. International Journal of Remote Sensing, 13: 1735-1758
5 Manjunath, B. S. and R. Chellappa, 1991. Unsupervised texture segmentation using Markov random field models. IEEE Trans. Patt. Anal. Mach. Int., 13: 478-482   DOI   ScienceOn
6 Leberl, F., 1990. Radargrammetric image processing, Artech House, Inc
7 Ulaby, F. T. and M. Craig Dobson, 1989. Handbook of radar scattering statistics for terrain, Norwood, MA : Artech House
8 Walessa M.and M. Datcu, 2000. Model-based despeckling and information extraction form SAR images. IEEE Trans. Geosci. Remote Sens., 38: 2258-2269   DOI   ScienceOn
9 Arsenault H. H. and G. April, 1976. Properties of speckle integrated with a finite aperture and logarithmically transformed. J. Opt. Soc. Amer., 66: 1160-1163   DOI
10 Dainty, J. C., 1984. Laser Speckle and Related Phenomena, Second Enlarged Edition
11 Lee, J. S., 1986. Speckle suppression and analysis for synthetic aperture radar. Optical Engineering, 25: 656-643
12 Jao, J. K., 1984. Amplitude distribution of composite terrain clutter and the k-distribution. IEEE Trans. Antennas Propagat., 32: 1049-1062   DOI
13 Varga, R. S., 1962. Matrix Iterative Analysis, Englewood Cliffs, NJ: Prentice-Hall
14 Bouman C. and B. Liu, 1991. Multiple resolution segmentation of textured images. IEEE Trans. Pattern Anal. Mach. Intell., 13: 99-113   DOI   ScienceOn
15 Frost, V. S., J. A. Stiles, K. S. Shanmugan, and J. C. Holtzman, 1982. A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell., 4: 157-165   DOI   ScienceOn
16 Sekine, M. and Y. Mao, 1990. Weibull Radar Clutter, London, U.K.: IEE Press
17 Cullen, C. G., 1972. Matrices and Linear Transformations. Reading, MA: Addison-Wesley
18 Andrey P. and P. Tarroux, 1998. Unsupervised segmentation of Markov random field modeled textured images using selectionist relaxation. IEEE Trans. Pattern Anal. Mach. Intell., 20: 252-262   DOI   ScienceOn
19 Georgii, H. O., 1979. Canonical Gibbs Measure. Berlin, Germany: Springer-Verlag
20 Kuan, D. T., A. A. Sawchuk, and P. Chavel, 1985. Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Trans. Pattern Anal. Machine Intell., 7: 165-177   DOI   ScienceOn
21 Kuttikkad S. and R. Chellappa, 1994. Non-Gaussian CFAR techniques for target detection in high resolution SAR images, Proc. ICIP-94, pp. 910-914
22 Anastassopoulos, V., G. A. Lampropoulos, and M. Rey, 1999. High resolution radar clutter statistics. IEEE Trans. Aerosp. Electron. Syst., 35: 43-60   DOI   ScienceOn
23 Kindermann R. and J. L. Snell, 1982. Markov Random Fields and Their Application, Providence, R. I.: Amer. Math. Soc