• Title/Summary/Keyword: pitting

Search Result 536, Processing Time 0.024 seconds

Effect of Alumina Content on the Hot Corrosion of SiC by NaCl and Na2SO4 (NaCl과 Na$_2$SO$_4$에 의한 SiC 고온 부식에 미치는 Alumina 첨가량의 영향)

  • 이수영;고재웅;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.8
    • /
    • pp.626-634
    • /
    • 1991
  • The specimens for the corrosion test were made by hot-pressing of SiC power with 2 wt% Nl2O3 and 10wt% Al2O3 additions at 200$0^{\circ}C$ and 205$0^{\circ}C$. The specimens were corroded in 37 mole% NaCl and 63 mole% Na2SO4 salt mixture at 100$0^{\circ}C$ up to 60 min. SiO2 layer was formed on SiC and then this oxide layer was dissolved by Na2O ion in the salt mixture. The rate of corrosion of the specimen containing 10 wt% Al2O3 was slower than that of the specimen containing 2 wt% Al2O3. This is due to the presence of continuous grain boundary phase in the specimen containing 10 wt% Al2O3. The oxidation of SiC produced gas bubbles at the SiC-SiO2 interface. The rate of corrosion follows a linear rate law up to 50 min. and then was accelerated. This acceleration is due to the disruption oxide layer by the gas evolution at SiC-SiO2 interface. Pitting corrosion has found at open pores and grain boundaries.

  • PDF

Influence of some additives on the process of Ni-W alloy electroplating

  • Wu, Yi-Yong;Kim, Dong-Soo;Chang, Do-Yon;Kwon, Sik-Chol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.56-56
    • /
    • 2001
  • Ni-W alloy deposit is one of the best alternatives to hard chromium plating because of its good mechanical properties (high hardness, high strength, and good wear resistance). Ni-W alloy is deposited from weakly acidic or alkaline electrolytic bath with nickel sulfate, sodium tungstate or APT, and some kinds of organic hydroxy-acid complex and ammonia salts. W content of the deposit can be changed from 0 to 5Owt% and the coating with high W content is more attracted. But, meanwhile, the deposited layers are always found high internal stress, which cause them to become brittle and to bond insufficiently with the substrate. On the second hand, as the W content is incresed, the current efficiency reduced, which results in large quantities of hydrogen evolution and then produces bubbles on surface and pitting appearance In this paper, the influence of some additives on Ni-W alloy electroplating was investigated by means of compositional analysis and SEM. The initial results showed that 2-butyne-1,4-diol was the best brightener for Ni-W plating process. It could brighten and level deposit, but decreased the cathodic current efficiency. Its optimum concentration range is from O.lgjL to 0.5gjL. Besides, three kinds of additives including 2-butyne-1,4-diol were examined with Dagguchi method.

  • PDF

Corrosion Characteristics of Ti, Ti/Cr Coated and Plasma-Nitrided Surface for Stainless Steel Containing Ti (Ti가 함유된 스테인리스강에서 Ti, Ti/Cr 코팅표면과 플라즈마질화표면의 부식특성)

  • 최한철;이승훈;김관휴
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.1
    • /
    • pp.89-98
    • /
    • 2003
  • Corrosion characteristics of Ti, Ti/Cr coated and plasma-nitrided surface for stainless steel containing Ti have been studied. Stainless steels containing 0.09-0.92wt% Ti were fabricated by using vacuum furnace and solutionized for 1hr at $1050^{\circ}C$. Ti and Cr coatings were done on solutionized stainless steel surface by EB-PVD. The Ti coated specimen were coated by Cr and were nitrided by plasma at $450^{\circ}C$ for 5hr Microstructure and phase analysis were performed using SEM, OM and EDX. Corrosion behavior of the coated specimen was investigated by electrochemical test. The coated surface was of fine columnar structure. The Ti/Cr coated surface was denser than the Ti coated and the Ti coated-nitrided surfaces. The corrosion and pitting potential increased in proportion to the Ti content, coating temperature, coating thickness and formation of stable oxide film. The current density in active and passive region decreased in the case of Ti/Cr coated sample and Ti coated-nitrided samples. Especially the plasma nitrided specimen after Ti coating have a good corrosion resistance compared with the Ti coated specimen. The number and size of pits decreased as Ti content of matrix increased.

Self-repairing Technology by Electrophoresis of Ni Nano-Particles for Heat Exchanger Tubes (Ni 나노입자의 전기영동 코팅에 의한 전열관 자가보수 기술 개발)

  • Lee, Gyoung-Ja;Lee, Min-Ku;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.238-244
    • /
    • 2007
  • The electrophoretic deposition process of Ni nano-particles in organic suspension was employed for self-repairing of heat exchanger tubes. For this purpose, Ni nano-particles prepared by levitational gas condensation method were dispersed into the solution of ethanol with the addition of dispersant Hypermer KD2. For electrophoretic deposition of Ni nano-particles on the Ni alloy specimen, constant electric fields of 20 and 100 V $cm^{-1}$ were applied to the specimen in Ni-dispersed solution. It was found that as electrophoretic deposition proceeds, the size of the pit or crack remarkably decreased due to the agglomeration of Ni nano-particles at the pit or crack. This strongly suggests that the electrophoretic mobility of the charged particles is larger for the damaged part with a higher current value rather than outer surfaces with a lower current value.

Statistical Approach for Corrosion Prediction Under Fuzzy Soil Environment

  • Kim, Mincheol;Inakazu, Toyono;Koizumi, Akira;Koo, Jayong
    • Environmental Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • Water distribution pipes installed underground have potential risks of pipe failure and burst. After years of use, pipe walls tend to be corroded due to aggressive soil environments where they are located. The present study aims to assess the degree of external corrosion of a distribution pipe network. In situ data obtained through test pit excavation and direct sampling are carefully collated and assessed. A statistical approach is useful to predict severity of pipe corrosion at present and in future. First, criteria functions defined by discriminant function analysis are formulated to judge whether the pipes are seriously corroded. Data utilized in the analyses are those related to soil property, i.e., soil resistivity, pH, water content, and chloride ion. Secondly, corrosion factors that significantly affect pipe wall pitting (vertical) and spread (horizontal) on the pipe surface are identified with a view to quantifying a degree of the pipe corrosion. Finally, a most reliable model represented in the form of a multiple regression equation is developed for this purpose. From these analyses, it can be concluded that our proposed model is effective to predict the severity and rate of pipe corrosion utilizing selected factors that reflect the fuzzy soil environment.

Wear Behavior of Die Steel in Molten Aluminum Alloy (용융 알루미늄 합금에 의한 다이캐스팅용 금형강의 용손거동)

  • Bae, Sang-Ho;Kang, Bok-Hyun;Kim, Ki-Young;Kim, Do-Hyang;Choi, Gun;Choi, Bae-Ho
    • Journal of Korea Foundry Society
    • /
    • v.28 no.3
    • /
    • pp.119-123
    • /
    • 2008
  • Wear test on two die steels for aluminum die casting was carried out by dipping and rotating the specimens into the molten aluminum maintained $680^{\circ}C{\sim}780^{\circ}C$. The rotating speed of the specimen was $4.5rpm{\sim}20.0rpm$. Diffusion layer was formed between the die steel and molten aluminum, and became thicker with dipping time. Wear rate was not proportional with the thickness of the diffusion layer, but was closely related to the density of the diffusion layer. Wear rate was little affected by the kind of die steel and by the microstructure such as martensite, tempered martensite, and pearlite. Specimen with nitrided surface showed good wear resistance, and its wear rate was decreased with increase in the thickness of nitrided layer. While whole surface was worn in heat treated specimens, wear of nitrided specimens was proceeded by pitting partially.

Evaluation of Plugging Criteria on Steam Generator Tubes and Coalescence Model of Collinear Axial Through-Wall Cracks

  • Lee, Jin-Ho;Park, Youn-Won;Song, Myung-Ho;Kim, Young-Jin;Moon, Seong-In
    • Nuclear Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.465-476
    • /
    • 2000
  • In a nuclear power plant, steam generator tubes cover a major portion of the primary pressure-retaining boundary. Thus very conservative approaches have been taken in the light of steam generator tube integrity According to the present criteria, tubes wall-thinned in excess of 40% should be plugged whatever causes are. However, many analytical and experimental results have shown that no safety problems exist even with thickness reductions greater than 40%. The present criterion was developed about twenty years ago when wear and pitting were dominant causes for steam generator tube degradation. And it is based on tubes with single cracks regardless of the fact that the appearance of multiple cracks is more common in general. The objective of this study is to review the conservatism of the present plugging criteria of steam generator tubes and to propose a new coalescence model for two adjacent through-wall cracks existing in steam generator tubes. Using the existing failure models and experimental results, we reviewed the conservatism of the present plugging criteria. In order to verify the usefulness of the proposed new coalescence model, we performed finite element analysis and some parametric studies. Then, we developed a coalescence evaluation diagram.

  • PDF

A Study on the Electrochemical Characteristics of Al-Si Casting Alloys in NaCl Solution (NaCl 수용액에서 Al-Si계 주조용 합금의 전기화학적 특성 연구)

  • Woo, Sang-Hyun;Son, Young-Jin;Lee, Byung-Woo
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.29-33
    • /
    • 2014
  • The electrochemical characteristics of Al-Si casting alloys (Al-10%Si, Al-9%Si, Al-7%Si) in 3.5% NaCl solution at room temperature was studied using potentiodynamic techniques. The electrochemical values of corrosion potential($E_c$), corrosion current density($I_c$) and corrosion rate(mpy) were examined. The Al-Si alloys had several compounds such as $Mg_2Si$, ${\pi}$-$Al_8Si_6Mg_2Fe$ and $Al_2CuMg$ which could affect corrosion resistance significantly. The potentiodynamic polarization curve exhibited typical active behavior in anodic polarization curve. The major corrosion mechansim for the Al-Si alloys were pitting and grain boundary corrosion. As increasing Si and Cu contents, their corrosion resistance was decreased.

Analysis of Wear Properties for $Ni_{3}Al$ Layer coated on Ferrous Materials by Diffusion Treatment after Combustion Synthesis at low Temperature (저온 연소합성 후 확산 열처리한 $Ni_{3}Al$ 금속간화합물 코팅층의 미끄럼 마모거동)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • Coating brittle intermetallic compounds on metal can enlarge the range of their use. It is found that intermetallic compound coating layers made by only combustion synthesis in an electric furnace have porous multi-phase structures containing several intermediate phases, even though the coating layers show good wear resistance. In this study, dense $Ni_{3}Al$ single phase layer corresponding to the initial composition of the mixed powder is coated on two different ferrous materials by the diffusing treatment after combustion synthesis. After- ward, sliding wear behaviors of the coating layer are evaluated in comparison with that of the coating layer with porous multi-phase structure made by only combustion synthesis. As a result, the wear properties of the coating layer composed of dense $Ni_{3}Al$ single phase are considerably improved at the range of low sliding speed com- pared with that of the coating layer with porous multi-phase structure, particularly in the running-in wear region. This is attributed to the fact that wear of the coating layer is progressed by shearing as a sequence of adhesion, not by occurring of pitting on the worn surface due to having dense structure without pores.

Electrochemical Damage Characteristics of Anodized 5083 Aluminum Alloy with Flow Rate in Seawater (양극산화 처리된 5083 알루미늄 합금의 해수 내 유속변화에 따른 전기화학적 손상 특성)

  • Park, Il-Cho;Kim, Seong-Jong
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.4
    • /
    • pp.349-356
    • /
    • 2016
  • In this study, electrochemical damage behaviors with flow rate were investigated for anodized 5083 aluminum alloy in seawater. As the results of anodic polarization experiments and potentiostatic experiments at +1.0 V (vs. SSCE), the non-flow condition presented largely damaged surface resulting from a tendency of local pitting damage. Under various flow rate conditions, however, less surface damages under the application of anodic potential was obtained which is attributed to no accumulation of $H^+$ and $Cl^-$ ions on the surface. On the other hand, the results of the potentiostatic experiments at -1.0 V (vs. SSCE) with flow rate showed that anodized 5083 aluminum alloys could achieve the effective cathodic protection by low cathodic protection current density less than $2.61{\times}10^{-7}A/cm^2$ even under high flow rate of 1 m/s.