• Title/Summary/Keyword: piston speed control

Search Result 61, Processing Time 0.028 seconds

Influence of valve plate configuration on torque ripple of a bi-directional bent-axis type hydraulic piston pump (양방향 회전형 사축식 유압 피스톤 펌프의 벨브 플레이트 형상이 토크 맥동에 주는 영향)

  • Kim, Sung-Hun;Hong, Yeh-Sun;Kim, Doo-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.231-237
    • /
    • 2007
  • The torque ripple of the hydraulic pumps for the Electro-hydrostatic Actuators can disturb the cylinder position control under slewing speed operation condition. In principle, the periodic change of the reaction torque generated by a piston type pump is highly dependent on the waveform of its cylinder chamber pressure. In case of uni-directional pumps operating at constant speed, the transient overshoot and rising slope of the cylinder pressure can be adjusted by the precompression angle and notch shape of their valve plates. Therefore, the influence of the valve plate geometry on the torque ripple magnitude of a bent-axis type piston pump for EHA application was investigated in this study. The results showed that any improvement of the torque ripple of such a bi-directional pump can not be achieved by modifying the valve plate geometry, regardless of its operation speed.

A Study on Life Prediction of Hydraulic Piston Pump (유압 피스톤 펌프의 수명 예측 연구)

  • Kim, Kyungsoo;Lee, Jihwan;Kang, Myeongcheol;Ryuh, Beomsahng
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.607-613
    • /
    • 2018
  • Hydraulic systems are widely used in the field of defense, construction machinery, agricultural machinery, and general industries, due to various advantages such as quick response speed and precision control. The defense equipments such as light rescue vehicle is operated in very harsh environments, so hydraulic components used in defense equipment are required to have very high reliability. In particular, hydraulic piston pump is very important component in a hydraulic systems, so life prediction of pump is essential. Therefore, in this study, we analyze the potential failure and the main failure mode of the hydraulic piston pump for the light rescue vehicle through the FMEA analysis, and predict the life of the pump by the accelerated life test considering the usage conditions.

Comparison of Cushion Performance on Parameter Changes in High Speed Pneumatic Cylinder Driving System (공기압 실린더 고속 구동시스템에서 파라미터 변화에 따른 쿠션성능 비교)

  • Kim, Do Tae;Jang, Zhong Jie
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.54-59
    • /
    • 2015
  • Due to the tendency to use high speed pneumatic cylinders to improve productivity, cushioning devices are adopted to decelerate the piston motion of pneumatic cylinders to reduce noise, vibration, and impact. This paper presents a comparison of the cushion characteristics of a high speed pneumatic cylinder with a relief valve type cushioning device. The system parameters selected are the damping coefficient, Coulomb friction, heat transfer coefficient, and cracking pressure of the relief valve in the air cushioning device. The integral of the time multiplied square error (ITSE) is used to quantitative measure the cushioning performance to assess the effect of varying these. The cushioning performance achieved good results when the ITSE is a minimum value. In a comparison of the piston displacement and velocity with the variations in system parameters, the heat transfer coefficients are not as significantly affected as the other. Also, the cracking pressure of the relief valve is mainly affected by the pressure and temperature in the cushion chamber.

A study on the adaptive control used in a system with variable load (가변부하시스템에서의 적응제어에 관한 연구)

  • 강대규;전내석;이성근;김윤식;안병원;박영산
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.6
    • /
    • pp.1122-1127
    • /
    • 2001
  • This paper proposed a speed adaptive control system with load torque observer and feed-forward compensation using neural network for air compressor system driven an induction motor. The motor receive impact load change under the influence of piston movement of up and down, and so it difficult to obtain good speed control characteristics. With real-time adjusting control gain estimated in neural network, control characteristics of motor is improved. The validity of the proposed system is confirmed through the theoretical analysis and computer simulation.

  • PDF

A study on the adaptive control used in a system with variable load (가변부하시스템에서의 적응제어에 관한 연구)

  • 강대규;전내석;이성근;김윤식;안병원;박영산
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.397-400
    • /
    • 2001
  • This paper proposed a speed adaptive control system with load torque observer and feed-forward compensation using neural network for air compressor system driven an induction motor. The motor receive impact load change under the influence of piston movement of up and down, and so it difficult to obtain good speed control characteristics. With real-time adjusting control gain estimated in neural network, control characteristics of motor is improved. The validity of the proposed system is confirmed through the theoretical analysis and computer simulation.

  • PDF

A Study on the Reaction Force Characteristics of the Gas Spring for the Automotive (자동차용 가스 스프링의 반력 특성에 관한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.35-40
    • /
    • 2015
  • A gas spring provides support force for lifting, positioning, lowering, and counterbalancing weights. It offers a wide range of reaction force with a flat force characteristic, simple mounting, compact size, speed controlled damping, and cushioned end motion. The most common usage is as a support on a horizontally hinged automotive tail gate. However, its versatility and ease of use has been applied in many other industrial applications ranging from office equipment to off-road vehicles. The cylinder of a gas spring is filled with compressed nitrogen gas, which is applied with equal pressure on both sides of the piston. The surface area of the rod side of the piston is smaller than the opposite side, producing a pushing force. The magnitude of the reaction force is determined by the cross-sectional area of the piston rod and the internal pressure inside the cylinder. The reaction force is influenced by many design parameters such as initial chamber volume, diameter ratio, etc. In this paper, we investigated the reaction force characteristics and carried out parameter sensitivity analysis for the design parameters of a gas spring.

Hydraulic Pumps Driven by Multilayered Piezoelectric Elements -Mathematical Model and Application to Brake Device -

  • Konishi, Katunobu;Ukida, Hiroyuki;Sawada, Koutarou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.474-479
    • /
    • 1998
  • In this paper, we present a mathematical model of the piezoelectric pump and its application to the automobile brake system. The piezoelectric pump consists of a multi-layered piezoelectric element a diaphragm, pumping values, resonant pipes and accumulators, and the maximum pumping power of 62W nab obtained in the previous experiments by using the piezoelectric element of 22mm diameter and 55.5mm length. A detailed mathematical model of the pump is derived here by considering the compressibility of the working oil, nonlinear characteristics of piezoelectric element, the time delay of pumping values' action and be on. The validity of the model is illustrated by comparing the experimental data and the simulation results. Using the mathematical model of the piezoelectric pump, a brake system for automobile disk brake is also simulated in this paper. The brake system consists of a piezoelectric pump as a power source, calipers and its piston to generate brake force, and a three position solenoid value to change the brake situation. It is shown that 15mm/sec of piston speed and 20kN of piston force are obtained by using the piezoelectric element of 33mm diameter and 55.5mm length.

  • PDF

A Study on the Optimum Design of Cylinder Block in Swash Plate Type Oil Hydraulic Piston Pump

  • Baek, Il-Hyun;Cho, Ihn-Sung;Jung, Jae-Youn;Choi, Byung-In;Oh, Seok-Hyung
    • KSTLE International Journal
    • /
    • v.8 no.2
    • /
    • pp.29-34
    • /
    • 2007
  • Recently, requirements relating to performance, environment and noise in the oil hydraulic system of the heavy construction equipment have been reinforced continuously. In order to solve these technical trends, studies on the system compactness, operation under high pressure and great rotating speed, electronic control, substitute oil, and noise reduction have been progressed briskly. Among these recent studies, the system operation under high pressure is quite difficult to carry into effect due to mechanical limitations; that is, for realizing the system operation in the hydraulic pump under high pressure, the improvements or innovations on the design techniques, the manufacturing techniques, and the lubrication performance of the working oil are required. Accordingly, in this study, the stress distribution and optimum design factors under the maximum pressure were discussed by using stress analysis on the cylinder block of the hydraulic axial piston pump, which is one of the most important relative sliding regions.

Optimum Hydraulic Oil Viscosity Based on Slipper Model Simulation for Swashplate Axial Piston Pumps/Motors

  • Kazama, Toshiharu
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.84-90
    • /
    • 2021
  • Viscosity of hydraulic oils decreases due to loss reduction and efficiency increase of fluid power systems. However, low viscosity is not always appropriate due to the induction of large leakage and small lubricity. Therefore, a detailed study on the optimum viscosity of hydraulic oils is necessary. In this study, based on the thermohydrodynamic lubrication theory, numerical simulation was conducted using the slipper model of swashplate-type axial piston pumps and motors. The viscosity grades' (VG) effects of oils on power losses are mainly discussed numerically in fluid film lubrication, including changes in temperature and viscosity. The simulation results reveal that the flow rate increases and the friction torque decreases as VG decreases. The film temperature and power loss were minimised for a specific oil with a VG. The minimum conditions regarding the temperature and loss were different and closed. Under various operating conditions, the film temperature and power loss were minimised, suggesting that an optimum hydraulic oil with a specific VG could be selected for given operating conditions of pressure and speed. Otherwise, a preferable operating condition must be established to determine a specific VG oil.