• Title/Summary/Keyword: pipeline network

Search Result 194, Processing Time 0.033 seconds

Malfunction Analysis when a EFV is Working (과류차단 밸브 작동 시 오작동에 대한 분석)

  • Jeon, Hyung Taek;Park, Sung Jin;Kim, Sung Tae
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.28-33
    • /
    • 2018
  • Currently, the government has been expanding the supply of semi-low-pressure in order to solve the problems of unsupplied area of city gas and to secure the economical efficiency of small supplied area. It is mainly supplied from the central storage tank to each household by buried piping. It is necessary to provide such a shutoff valve that can block the excess flow gas due to pipeline leak or rupture when piping is damaged by other construction. For this study, System CFD code named Flownex has been used and a component corresponding to the actual EFV was developed. We compared Flownex results with experimental data to verify the accuracy of Flownex and confirmed the error rate to be around 2%. In this study, pipeline network modeling was done by selecting the LPG supply pipeline in a village and installed the component of the EFV at each junction. We selected the longest pipeline from the main pipeline and set scenarios so that the excess flow occurs by that the pipeline is ruptured before entering the household. The excess flow occurs by the pipeline rupture and the EFV is closed. At this time, we analyzed backflow effects to the other pipeline by closing EFV.

Automatic Pipeline Welding System with Self-Diagnostic Function and Laser Vision Sensor

  • Kim, Yong-Baek;Moon, Hyeong-Soon;Kim, Jong-Cheol;Kim, Jong-Jun;Choo, Jeong-Bog
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1137-1140
    • /
    • 2005
  • Automatic welding has been used frequently on pipeline projects. The productivity and reliability are most essential features of the automatic welding system. The mechanized GMAW process is the most widely used welding process and the carriage and band system is most effective welding system for pipeline laying. This application-oriented paper introduces new automatic welding equipment for pipeline construction. It is based on cutting-edge design and practical welding physics to minimize downtime. This paper also describes the control system which was designed and implemented for new automatic welding equipment. The system has the self diagnostic function which facilitates maintenance and repairs, and also has the network function via which the welding task data can be transmitted and the welding process data can be monitored. The laser vision sensor was designed for narrow welding groove in order to implement higher accuracy of seam tracking and fully automatic operation.

  • PDF

Seismic strain analysis of buried pipelines in a fault zone using hybrid FEM-ANN approach

  • Shokouhi, Seyed Kazem Sadat;Dolatshah, Azam;Ghobakhloo, Ehsan
    • Earthquakes and Structures
    • /
    • v.5 no.4
    • /
    • pp.417-438
    • /
    • 2013
  • This study was concerned on the application of a hybrid approach for analyzing the buried pipelines deformations subjected to earthquakes. Nonlinear time-history analysis of Finite Element (FE) model of buried pipelines, which was modeled using laboratory data, has been performed via selected earthquakes. In order to verify the FE model with experiments, a statistical test was done which demonstrated a good conformity. Then, the FE model was developed and the optimum intersection angle of pipeline and fault was obtained via genetic algorithm. Transient seismic strain of buried pipeline in the optimum intersection angle of pipeline and fault was investigated considering the pipes diameter, the distance of pipes from fault, the soil friction angles and seismic response duration of buried pipelines. Also, a two-layer perceptron Artificial Neural Network (ANN) was trained using results of FE model, and a nonlinear relationship was obtained to predict the bending strain of buried pipelines based on the pipes diameter, intersection angles of the pipelines and fault, the soil friction angles, distance of pipes from the fault, and seismic response duration; whereas it contains a wide range of initial input data without any requirement to laboratory measurements.

THE AUTOMATIC CALIBRATION OF KOREAN VLBI NETWORK DATA

  • HODGSON, JEFFREY A.;LEE, SANG-SUNG;ZHAO, GUANG-YAO;ALGABA, JUAN-CARLOS;YUN, YOUNGJOO;JUNG, TAEHYUN;BYUN, DO-YOUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.4
    • /
    • pp.137-144
    • /
    • 2016
  • The calibration of Very Long Baseline Interferometry (VLBI) data has long been a time consuming process. The Korean VLBI Network (KVN) is a simple array consisting of three identical antennas. Because four frequencies are observed simultaneously, phase solutions can be transferred from lower frequencies to higher frequencies in order to improve phase coherence and hence sensitivity at higher frequencies. Due to the homogeneous nature of the array, the KVN is also well suited for automatic calibration. In this paper we describe the automatic calibration of single-polarisation KVN data using the KVN Pipeline and comparing the results against VLBI data that has been manually reduced. We find that the pipelined data using phase transfer produces better results than a manually reduced dataset not using the phase transfer. Additionally we compared the pipeline results with a manually reduced phase-transferred dataset and found the results to be identical.

Analysis of Propagation of Negative Pressure Wave Due to Leak Through Damaged Hole in High Pressure Piping System (고압 배관망에서 배관 손상에 의한 누출 및 관내 저압확장파의 전파 특성 해석)

  • Kim, Wang-Yeun;Ha, Jong-Man;Ha, Tae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 2008
  • The safe operation of high pressure pipe line systems is of significant importance. Leaks due to faulty operation from the pipelines can lead to considerable product losses and to exposure of community to dangerous gases. There are several leak detection methods of pipeline network which have recently been suggested. The negative pressure wave detection technology, which has advantages of short time detection availability, accurate leaking location estimate capability and cost effective, is concentrated in this study. Theoretical analysis of the flow characteristics for leaking through a hole on the pipe wall has been performed by using Fluent 6.3, commercial CFD package. The results of 3-dimensional analysis near leaking hole confirm the occurrence of negative pressure wave, and the results of 2-dimensional analysis verify the characteristics of propagation of the wave which travels with speed equal to the speed of sound in the pipeline contents. Characteristics of leakage and pressure in a pipe with a hole have been analyzed for the various pipe and hole sizes.

Development of a Failure Probability Model based on Operation Data of Thermal Piping Network in District Heating System (지역난방 열배관망 운영데이터 기반의 파손확률 모델 개발)

  • Kim, Hyoung Seok;Kim, Gye Beom;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.322-331
    • /
    • 2017
  • District heating was first introduced in Korea in 1985. As the service life of the underground thermal piping network has increased for more than 30 years, the maintenance of the underground thermal pipe has become an important issue. A variety of complex technologies are required for periodic inspection and operation management for the maintenance of the aged thermal piping network. Especially, it is required to develop a model that can be used for decision making in order to derive optimal maintenance and replacement point from the economic viewpoint in the field. In this study, the analysis was carried out based on the repair history and accident data at the operation of the thermal pipe network of five districts in the Korea District Heating Corporation. A failure probability model was developed by introducing statistical techniques of qualitative analysis and binomial logistic regression analysis. As a result of qualitative analysis of maintenance history and accident data, the most important cause of pipeline damage was construction erosion, corrosion of pipe and bad material accounted for about 82%. In the statistical model analysis, by setting the separation point of the classification to 0.25, the accuracy of the thermal pipe breakage and non-breakage classification improved to 73.5%. In order to establish the failure probability model, the fitness of the model was verified through the Hosmer and Lemeshow test, the independent test of the independent variables, and the Chi-Square test of the model. According to the results of analysis of the risk of thermal pipe network damage, the highest probability of failure was analyzed as the thermal pipeline constructed by the F construction company in the reducer pipe of less than 250mm, which is more than 10 years on the Seoul area motorway in winter. The results of this study can be used to prioritize maintenance, preventive inspection, and replacement of thermal piping systems. In addition, it will be possible to reduce the frequency of thermal pipeline damage and to use it more aggressively to manage thermal piping network by establishing and coping with accident prevention plan in advance such as inspection and maintenance.

Leak and Leak Point Prediction by Detecting Negative Pressure Wave in High Pressure Piping System (저압확장파 검출을 통한 배관 누출 및 누출위치 예측)

  • Ha, Tae-Woong;Ha, Jong-Man;Kim, Dong-Hyuk;Kim, Young-Nam
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.47-53
    • /
    • 2007
  • The safe operation of high pressure pipe line systems is of significant importance. Leaks due to faulty operation from the pipelines can lead to considerable product losses and to exposure of community to dangerous gases. There are several leak detection methods, which have been recently suggested on pipeline network. The negative pressure wave detection technology, which has advantages of short time detection availability, accurate leaking location estimate capability and cost effective, is concentrated in this study. Theoretical analysis of the flow characteristics for leaking through a hole on the pipe wall has been performed by using CFD++, commercial CFD package. The results of 3-dimensional analysis near leaking hole confirm the occurrence of negative pressure wave and verify the characteristics of propagation of the wave which travels with speed equal to the speed of sound in the pipeline contents. For the application of long pipe line system. The method of 1-dimensional analysis has been suggested and verified with results of CFD++.

  • PDF

Implementation of AIoT Edge Cluster System via Distributed Deep Learning Pipeline

  • Jeon, Sung-Ho;Lee, Cheol-Gyu;Lee, Jae-Deok;Kim, Bo-Seok;Kim, Joo-Man
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.278-288
    • /
    • 2021
  • Recently, IoT systems are cloud-based, so that continuous and large amounts of data collected from sensor nodes are processed in the data server through the cloud. However, in the centralized configuration of large-scale cloud computing, computational processing must be performed at a physical location where data collection and processing take place, and the need for edge computers to reduce the network load of the cloud system is gradually expanding. In this paper, a cluster system consisting of 6 inexpensive Raspberry Pi boards was constructed to perform fast data processing. And we propose "Kubernetes cluster system(KCS)" for processing large data collection and analysis by model distribution and data pipeline method. To compare the performance of this study, an ensemble model of deep learning was built, and the accuracy, processing performance, and processing time through the proposed KCS system and model distribution were compared and analyzed. As a result, the ensemble model was excellent in accuracy, but the KCS implemented as a data pipeline proved to be superior in processing speed..