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Abstract 
 

Recently, IoT systems are cloud-based, so that continuous and large amounts of data collected from 

sensor nodes are processed in the data server through the cloud. However, in the centralized configuration 

of large-scale cloud computing, computational processing must be performed at a physical location where 

data collection and processing take place, and the need for edge computers to reduce the network load of the 

cloud system is gradually expanding. In this paper, a cluster system consisting of 6 inexpensive Raspberry Pi 

boards was constructed to perform fast data processing. And we propose "Kubernetes cluster system(KCS)" 

for processing large data collection and analysis by model distribution and data pipeline method. To 

compare the performance of this study, an ensemble model of deep learning was built, and the accuracy, 

processing performance, and processing time through the proposed KCS system and model distribution were 

compared and analyzed. As a result, the ensemble model was excellent in accuracy, but the KCS 

implemented as a data pipeline proved to be superior in processing speed.. 
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1. Introduction 
 

Today, deep learning is being applied and used in various fields such as image recognition, natural language 

processing, and anomaly detection. In addition, as the size of data to be processed and the size of models that 

perform calculations increased rapidly with the development of data processing technology, advanced artificial 

intelligence technologies such as GPT-3 appeared.[1] For deep learning operations, it is important to have a 

computing system environment that can efficiently perform operations not only in software but also in 

hardware environments with limited performance. Distributed networks have been proposed as a solution to 

this, and studies are underway to utilize these technologies in computing systems with efficiency and 

performance and in AI fields. [2,3] Distributed deep learning shows superior performance compared to single 

processing. was proven, and research was conducted to operate in a multi-processing environment by 

constructing a sophisticated model. [4.5] However, one of the disadvantages of the distributed network system 
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for implementing this is that the construction cost of the system itself is very high. Performance or efficiency 

cannot be expected when a distributed computing environment is built using inexpensive IoT devices, not 

GPUs or TPUs, which are mainly used in distributed network system environments. Accordingly, research 

on how to build a distributed network using relatively inexpensive hardware is currently underway, and the 

need for additional research on how to build a low-cost distributed learning system apart from a large-scale 

model in the future is also emerging. [6] 

IoT is a key technology of the future, and the size of the IoT market is growing every year.[7] Recently, in 

order to advance the IoT system, many studies are being conducted to build an autonomous AIoT system by 

combining AI with IoT.[8] The key to combining IoT and AI is to process a large amount of AI computation 

within the user's desired reaction time. However, most IoT devices do not have the computing power to 

satisfy the user's desired reaction time by performing AI calculations. Although cloud services have been 

commercialized to solve this computing power problem, cloud services have limitations in long 

communication delays due to high RTT and low network bandwidth.[9] To overcome the limitations of these 

services, edge computing technology was introduced where data collection takes place before accessing the 

cloud.[10] Edge computing is considered as one of the important future technologies for IoT system 

computing because it performs calculations directly on the device itself rather than on the cloud method that 

performs centralized calculation processing. [11,12,13] However, since IoT devices use various operating 

systems, the need to separately build a processing system for performing edge computing in various devices 

with heterogeneity is also raised. Edge computers require processing performance for continuous data 

collection, processing, and storage, and processing and analysis of big data collected and stored from 

external sensor devices [14] Analytical techniques and processing performance are required. Proven 

processing performance in a distributed processing environment by connecting multiple Raspberry Pi.[15] 

In this paper, we built an edge computing system platform (KCS) that mounts virtual containers on IoT 

devices through Docker for 6 Raspberry Pi boards and clusters virtualized nodes through Kubernetes. As a 

deep learning model to be mounted on the cluster, a transfer learning-based model was built using 

MobilenetV2 specialized for embedded devices, and then mounted on the pipeline connecting the nodes in 

the cluster. 

 

2. Related Studies 

 

2.1 Docker 

 

Docker is an open source virtualization platform for building applications based on containers.[16] Docker 

installed in the operating system kernel has a structure similar to that of a virtual machine (VM), but there is 

no physical emulation. Due to these characteristics, it is possible to create various containers on one host, 

and by operating it, it has the advantage of building a virtual environment that is more efficient than a virtual 

machine. 

 

2.2 Kubernetes 

 

Kubernetes is a management system that provides automatic deployment and scaling of container-level 

applications.[17] It aims to provide a platform for automating the deployment, scaling and operation of 

application containers across hosts in multiple clusters. It has the nature of working with a set of container 

tools, including Docker. It has the advantage of easy management and search by grouping the containers that 
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make up the application into logical units. Kubernetes gradually rolls out changes to the application or its 

configuration while monitoring the health of the application to ensure that not all instances are killed at the 

same time, and rolls back the changes when issues arise. Containers in Kubenatis are called PODs, and you 

can give these PODs a unique IP address and a single DNS for a set of PODs and perform load balancing. It 

also restarts failed containers, replaces and reschedules containers when a node dies. It also shuts down 

containers that do not respond to custom health checks, not notifying clients until they are ready to serve. 

 

2.3 CNN 

 

CNN, also called convolutional neural network, is a neural network specialized in processing data such as 

images arranged in a fixed grid form.[18] It has greatly contributed to image search services, autonomous 

vehicles, and automatic image classification systems, and is used in fields such as speech recognition and 

natural language processing in addition to visual fields. In CNN, the convolutional layer automatically finds 

the most useful filter (convolutional kernel) through learning, and the upper layer connects them to learn 

more complex patterns. 

 

2.4 MobilenetV2 

 

MobilenetV2, announced by Google in 2019, is a model that performed better than MobilenetV1, which 

effectively reduced the amount of computation and the number of model parameters by introducing the 

concept of Depthwise Separable Convolution. Due to the nature of the lightweight model, it is suitable for 

use in limited environments such as mobile devices, and based on these characteristics, it is actively used in 

the embedded environment. MobilenetV2 reduces the dimension when constructing a bottleneck structure 

that maps data to a lower dimension through the Linear Bottleneck Layer, but enables the mainfold [19]. 

Figure 1 shows the core operating mechanism of the MobilenetV2 model, the deep learning model used in 

this paper. In MobilenetV2, Inverted Residual Block works in the opposite mechanism to Resnet's Residual 

Block, which is a representative CNN high-performance model, and through this, the compressed narrow 

layer is used as a skip connection, thereby reducing memory usage [20]. However, MobilenetV1 and 

MobilenetV2 have the disadvantage that there is a trade-off relationship between model size and 

performance [21]. Therefore, this paper is designed to preserve the size of the MobilenetV2 model as much 

as possible and guarantee improved performance using transfer learning. 

 

Figure 1. The core operating mechanism of MobilenetV2[19] 
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2.5 Distributed Deep Learning 

 

The computational resources of a single computer are not sufficient to run large-scale neural networks. A 

learning method that has emerged to solve this problem is distributed learning. There are two types of 

distributions in deep learning. A parallel distribution method of data in which each input sample is processed 

by a different computer, and a model distribution method in which one data point is processed by multiple 

computers. In this case, the deep learning model is divided into layers and deployed to multiple computers, 

so the computers run different parts of the model. [22,23] 

 

3. System Design 

 

3.1 Edge cluster for KCS 

 

In this paper, using 6 Raspberry Pi 4Bs, it consists of 1 master node and 5 slave nodes. By mounting a 

virtual container on each node through Docker, the virtualized node is configured to cluster multiple Dockers 

by Kubernets. Doker, which provides the same environment as a method to cope with the heterogeneity of 

various devices in the Internet of Things environment, and the application of Kubernetes to manage these 

same virtualized nodes are the core structures of this paper. For each container in the cluster, an environment 

for processing AI jobs was built using python3.7 and tensorflow2.4.  

 

 

Figure 2. The structure AIoT Edge Kubernetes cluster 

 

In the study conducted in this paper, Jupyter Notebook and SSH service are load-balanced in containers. 

By servicing Jupyter Notebook, it facilitates maintenance of the AI model and execution environment 

through external port access, and provides SSH service for file transfer and command transfer between nodes. 

At this time, multiple ports are used in one container, and a load balancer is applied to connect the ports 

according to the purpose of the service. Mount the /home/data directory in the container to the /mnt/data 

directory of the Raspberry Pi to make it easy to use the file system inside and outside the container. Figure 2 

shows the overall structure of KCS proposed in this paper. 

 

3.2 MobilenetV2 distributed pipeline model based on transfer learning 

 

The Raspberry Pi device lacks computational power to use the image processing model. Therefore, in this 

paper, we propose a distributed deep learning pipeline model as a way to ensure fast processing time by 
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installing it on a Raspberry Pi cluster. Among deep learning models, we learn MobilenetV2, a CNN model 

specialized for embedded environments. At this time, in order to supplement the trade-off relationship 

between the performance of the MobilenetV2 model and the amount of computation, learning is carried out 

using the transfer learning technique. By applying the model distribution technique to the trained model, the 

layer is divided, and data pipelining is performed by loading it on each node of the cluster. 

 

 

Figure 3. Structure of the Parallel Deep Learning Pipeline Model 

 

Figure 3 shows the structure of the distributed deep learning pipeline model proposed in this paper. Nodes 

in the cluster constituting the pipeline can communicate and transmit data between nodes using SSH 

communication. Analyze the distribution of the number of parameters and the amount of computation for 

each layer of MobilenetV2. After that, considering the amount of computation, the entire layer of the model 

is divided into 5, and then allocated to each slave node in the cluster. When input data enters the pipeline, it 

goes through the layers of the model in turn and performs calculations. Then, the execution result is 

transmitted to the input of the next node and the next operation is performed simultaneously. The next node 

performs an operation based on the received weight and performs the same operation as the previous node. 

The last node constituting the pipeline outputs the final execution result of the operation as an output. 

 

4. System Implementation and Performance Evaluation 

 

4.1 Implementing a Kubernetes Edge Cluster 

 

An edge cluster consisting of 1 master node and 5 slave nodes was built using 6 Raspberry Pi 4Bs. 

Kubernetes was used as the cluster system. 

 

 

Figure 4. Kubernetes node connection status 

 

Figure 4 shows the results of checking the connection status of each node through the command after 

building a cluster using Kubernetes. First, build an image that will be used to build an environment for 
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performing operations on each node in the cluster using Docker. At this time, the image was built by creating 

a new image called cjfrb0811/pi-tensorflow:2.4.0 and pushed to DockerHub. After that, a POD container 

was created and distributed by pulling the cjfrb0811/pi-tensorflow:2.4.0 image from Kubernetes. 

'RestartPolicy = Always' is set so that re-execution is possible when a failure occurs in the container during 

the POD deployment process. 

tensorflow-deployment1~5 are fixedly assigned to each node and provide an environment for 

implementing data pipelining. In the cluster constructed in this paper, the real node and the POD, which is a 

virtual environment, are mounted to each other to connect the storage space. Public Volume was allocated 

5GB of storage space for Node, and it was set to be allocated up to 3GB when requesting a claim. Through 

this, the real space "/mnt/data" of the node and the virtual space "/home/data/" of the POD can share the 

storage space. 

 

 

Figure 5. Deployment of the Kubernetes POD 

 

Figure 5 shows the result of deploying the POD to each node in Kubernetes and checking the deployed 

status. When accessing the POD from the outside, load balancing was performed to allow access through the 

HTTP method and the SSH method. As a method for this, an L4 load balancer that distributes the port load 

was applied and used. The HTTP method provides services for simple file management, POD-specific deep 

learning model execution and testing through Jupyter Notebook. The SSH method provides services for file 

transmission and reception, remote execution of files inside the POD, and return of execution results. Both 

ports use the TCP protocol, and all external access IPs are designated as the IP of the general node. Figure 6 

shows the result of checking the port and connection status of each node after deploying the service in 

Kubernetes. 

 

 

Figure 6. Kubernetes Service 

 

4.2 MobilenetV2 learning based on transfer learning 

 

In this paper, Kaggle's PlantVillage dataset was used as training data for the MobilenetV2 model. The 

dataset consists of a total of 16023 tomato pest image datasets, divided into 10 normal/pest classes. The 

dataset has severe data imbalance, which can reduce the reliability of training and cause overfitting in model 

training. Figure 7 is a chart showing the distribution by class of the dataset before preprocessing.  
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Figure 7. Distribution of pre-processing data by class 

 

Before performing model learning, a class imbalance resolution task through data augmentation was 

performed as a data preprocessing task. As a preprocessing technique, RandomRotation, RandomFlip, 

RandomCrop, and RandomZoom functions, which are data preprocessing functions of the Keras module, 

were used. As a result of performing data pre-processing through this, a total of 100,000 image datasets 

consisting of 10,000 sheets per class was constructed. Figure 8 is a chart showing the distribution by class of 

the dataset after preprocessing.  

 

 

Figure 8. Distribution of data after pre-processing by class 

 

When learning MobilenetV2, after setting the batch size to 32, model preprocessing was performed 

through the preprocess_input() method. To optimize the data input step, caching and prefetching using 

AUTOTUNE were performed. The training data was mixed with the train dataset with a buffer of size 100. 

GlobalAveragePooling was used as the pooling technique, and dropout was applied. As the activation 

function for the output, the softmax function was used in consideration of the fact that the data distribution 

according to the class has a multi-sister distribution. In the learning process, the pooling layer, dropout layer, 

and output layer were first learned by freezing the original model base model (mobilenetV2). At this time, 

Adam was used as the optimizer, and CategorialCrossentropy was used as the loss function. In the initial 

training, the epoch was set to 5. As a result of training, the valid loss was 0.2864 and the valid accuracy was 

0.9053. After that, during transfer learning, the base model was unfreeze and then training was carried out. In 

this case, Adam was used as the optimizer, and the learning rate was set to 0.00001. As the loss function, 

CategorialCrossentropy was used. 
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Figure 9. Graph of Training Results 

 

Figure 9(a) is a graph showing the training degree and validation accuracy of a model that has performed 

transfer learning. As a result of training, the valid loss was 0.1465 and the valid accuracy was 0.9505. When 

the changes in accuracy and loss values were checked in graph form using the matplotlib module, the train 

value and valid value graph came out with a similar distribution, and based on this, it was confirmed that 

overfitting did not occur. In addition, as a result of calculating the F1 score, 0.93 was obtained, confirming 

that the model showed excellent performance. Figure 9(b) is a graph showing the training and validation 

errors of the trained model. 

 

4.3 Implementation of distributed deep learning pipeline by model partitioning 

 

After performing transfer learning, a distributed deep learning pipeline was implemented by performing 

model segmentation. After analyzing the entire layer of MobilenetV2, a total of 157 layers of the entire 

model were divided into 5 models, each 27/27/36/53/14 considering the amount of computation. The divided 

model was assigned to 5 slave nodes in the cluster. We implemented a distributed deep learning pipeline 

model that returns a weight value through Gradient Descent and Batch Normalization for each unit of layer 

where the operation is executed, designates it as the output of the node, and transmits this weight value as the 

input of the next node. Figure 10 shows the actual construction of KCS equipped with a distributed deep 

learning pipeline. 
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Figure 10. The actual Raspberry Pi cluster 

 

4.4 Comparative evaluation for model performance 

 

In this paper, an ensemble model was additionally implemented to compare the performance of the 

distributed deep learning pipeline model installed in KCS. 

 

 

Figure 11. Structure of the Ensemble processing model 

 

Figure 11 shows the structure of the ensemble model built for performance verification in this paper. In 

the full deep learning model that classifies 10 classes in one device, one input data is classified into two 

classes at each node, and then the result is changed to an ensemble model that sums the results. In addition, 

the MobilenetV2 model also reduced I/O classes to two to perform binary classification. In this case, the 

activation function used the sigmoid function considering that the output data according to the class follows 

the Bernoulli distribution. When input data enters the cluster, the same input data is transmitted to the model 

of each node through SSH communication, and then the classification operation is performed. After 

collecting the results of each operation, the final prediction of the model with the highest performance is 

returned. At this time, in order to prevent the possibility of misclassification, the model's performance is 

verified by comparing the class predicted by the model with the class of the input data once more. 
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Table 1. Comparision of performance based on type of construction models 

 
 

Table 1 shows the results of comparing the performance of the KCS and control ensemble model proposed 

in this paper and the model in a single processor environment. As a result of the experiment, it was 

confirmed that in the edge computing environment based on ensemble, the performance was slightly higher 

than that of KCS, but the processing time was more than 5 minutes. On the other hand, it was confirmed that 

the KCS model has slightly lower performance than the ensemble model, but has a processing time that is 

about 70% faster. When compared with the single processor environment, it was confirmed that the KCS 

model has 90% faster processing time. Through this, it was confirmed that the distributed deep learning 

pipeline model can guarantee good performance based on the fastest processing time in order to mount AI 

within a fast processing time that can satisfy users in an edge computing environment. 

 

5. Conclusion 

 

The occurrence of a lot of data in the IoT environment saturates the cloud environment, and thus the 

service that does not depend on time and place could not be satisfied. In this paper, we proposed a 

high-performance edge computer by reducing the cloud load, clustering the Raspberry Pi for 

high-performance processing at the data generation point, and using a distributed deep learning technique. In 

this paper, we propose and implement a Kubernetes-based edge cluster computing environment as a way to 

perform deep learning operations within the processing time that users can satisfy in the AIoT environment. 

In addition, a distributed deep learning pipeline model optimized for multi-processing was proposed and 

implemented through the model distribution of deep learning with a large amount of computation. In 

addition, it was demonstrated that an AIoT platform that guarantees low latency and high processing speed 

when performing deep learning operations in the cluster system (KCS) implemented in this paper can be 

implemented. If the KCS proposed in this paper is mounted on a high-performance GPU processor-based 

cluster, it is expected to show very good performance even when a model with a large amount of 

computation is loaded and executed. 
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