• Title/Summary/Keyword: pipe pressure

Search Result 1,403, Processing Time 0.028 seconds

Comparison of earth pressure around pipe-roof between UPRS and front-jacking method (UPRS 공법과 프론트잭킹 공법의 파이프루프 주변 현장토압 계측결과 비교)

  • Sim, Youngjong;Jin, Kyu-Nam;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.5
    • /
    • pp.513-522
    • /
    • 2015
  • This study is to confirm the effect of pre-installed pipe-roof by measuring earth pressure acting on the underpass. In recently developed trenchless methods pre-inserted steel pipes before ground excavation to form pipe-roof are connected each other with re-bars and filled with mortar. In this study, focusing on the Upgraded Pipe Roof Structure method (UPRS) and Front-Jacking, earth pressure around pipe-roof is measured after insertion of steel pipe to ensure the effect of earth pressure reduction. In case of the UPRS earth pressure is considerably reduced because of the reinforced effect of pipe-roof. In case of the Front-Jacking in which the whole underpass structure is pushed into the ground, earth pressure is not reduced as expected, because the pre-installed pipes are not needed to be reinforced.

Fluid-Structure Interaction Analysis of Pressure Pulsation in a Suction Pipe of Compressor (압축기 흡입배관 압력 맥동의 유체-구조 연성 해석)

  • Oh, Han-eum;Jeong, Weui-Bong;Ahn, Se-Jin;Kim, Min-sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.779-780
    • /
    • 2014
  • This paper dealt with numerical estimation of pressure pulsation of the refrigerant in a suction pipe of the compressor. To evaluate the effect of reduction of pressure pulsation, a pipe system with tube was simulated using F.S.I.(Fluid-structure interaction) analysis. A commercial program was used for calculating behavior of pressure. The numerical simulation for pressure ratio of before and after going though internal structure were carried out. As a result, it was verified that the pressure after passing structure is less than the pressure before passing internal structure depending on the longitudinal frequency of structure.

  • PDF

An Improved Pipe Hoop Stress Formula

  • Lee, Jaeyoung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.76-82
    • /
    • 2001
  • The ASME B3l.4〔1〕and B3l.8 〔2〕codes use the thin wall formula to predict hoop stress in a pipe. To account for the external pressure, the above codes simply subtract the external pressure from the internal pressure. The thin wall formula using this differential pressure does not give the same hoop stress as the thick wall formula. This paper proposes an improved equation to predict pipe hoop stress subjected to both internal and external pressure. Compared to the conventional thin wall formula, the improved formula has additional terms, which improve the agreement with the thick wall formula and account for external pressure. The improved formula is less conservative than the conventional thin wall formula, but slightly more conservative than the thick wall formula. The formula is simpler and easier to use than the thick wall formula and will save pipe material cost as well as installation cost compared to using the conventional thin wall formula. The savings will increase as the water depth increases.

  • PDF

Limit Loads for Pipe Bends under Combined Pressure and in-Plane Bending Based on Finite Element Limit Analysis (압력과 모멘트의 복합하중을 받는 곡관에 대한 유한요소 한계하중 해석)

  • Oh Chang-Sik;Kim Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.505-511
    • /
    • 2006
  • In the present paper, approximate plastic limit load solutions fur pipe bends under combined internal pressure and bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. The present FE results show that existing limit load solutions for pipe bends are lower bounds but can be very different from the present FE results in some cases, particularly for bending. Accordingly closed-form approximations are proposed for pipe bends under combined pressure and in-plane bending based on the present FE results. The proposed limit load solutions would be a basis of defective pipe bends and be useful to estimate non-linear fracture mechanics parameters based on the reference stress approach.

A Study on the Pressure Wave Propagation of Viscous Fluid Flow in a Pipe Line (관로에서 점성유체 유동의 압력파 전달에 관한 연구)

  • Kim, H.O.;Na, G.D.;Mo, Y.W.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.835-840
    • /
    • 2000
  • The objective of the present study is to investigate the characteristics of pressure wave propagation of viscous fluid flow in a circular pipe line. The goal of this study is to select the best frequency of each control factor of a circular pipe. We intend to approach a formalized mathematical model by a very exact and reasonable polynomial for fluid transmission lines. and we computed this mathematical model by computer. The results show that the oil viscosity decreased as the length of the circular pipe increases. and The energy of pressure wave propagation decreased as the pipe diameter decreases. The factor is that density of oil was changed resonant frequency. It has been found the viscosity characteristics is changed largely by length of hydraulic pipe and volume of cavity tank.

  • PDF

Limit Loads for Pipe Bends under Combined Pressure and in-Plane Bending Based on Finite Element Limit Analysis (압력과 모멘트의 복합하중을 받는 곡관에 대한 유한요소 한계하중 해석)

  • Oh C.S.;Kim Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.401-402
    • /
    • 2006
  • In the present paper, approximate plastic limit load solutions for pipe bends under combined internal pressure and bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. The present FE results show that existing limit load solutions for pipe bends are lower bounds but can be very different from the present FE results in some cases, particularly for bending. Accordingly closed-form approximations are proposed for pipe bends under combined pressure and in-plane bending based on the present FE results. The proposed limit load solutions would be a basis of defective pipe bends and be useful to estimate non-linear fracture mechanics parameters based on the reference stress approach.

  • PDF

Pressure Drop in a Circular Pipe of Waste Collection Piping System (쓰레기 관로 이송 시스템의 관로 압력강하 평가)

  • Jang, Choon-Man;Lee, Sang-Yun;Suh, Sang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.4
    • /
    • pp.55-60
    • /
    • 2007
  • This paper describes an evaluation method of pressure drop in a circular pipe of waste collection piping system. Accurate pressure drop in a piping system is very important to determine the capacity of turbo blower, which is one of the main elements in the system. Three-dimensional Navier-Stokes analysis is introduced to analyze the pressure drop in the piping system. Organic waste is selected and modeled using the result of site survey performed in an apartment area. Evaluation method of pressure drop used In the present numerical simulation is performed in the shortened pipe line prior to the calculation of the real system. Throughout the numerical simulation, pressure drop in a waste pipe is obtained and compared to the value determined by analytical method. The pressure drop obtained by numerical simulation has a good agreement with that of the analytic method. It is noted that present evaluation method is effective to determine a pressure drop in the piping system. Detailed flow characteristics inside the pipe line are also analyzed and discussed.

A Study on the Evaluation of Pressure Resistance and Effective Thermal Conductivity of Thin Heat Pipes Using Polymer Compound Sheets for Bonding Metal Thin Plates (금속박판 접합용 고분자화합물시트를 이용한 박형 히트파이프 내압성 및 유효열전도율 평가에 관한 연구)

  • Yu, Byeong-Seok;Kim, Jeong-Hun;Kim, Dong-Gyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.509-515
    • /
    • 2021
  • In this study, a pressure vessel for a heat pipe was fabricated by bonding a metal thin film using a polymer compound sheet. In order to confirm the applicability of the experimentally manufactured copper material thin heat pipe of 0.6 mm or less, the pressure resistance and effective thermal conductivity for pressure generated according to the type of the working fluid of the heat pipe were evaluated to suggest the commercialization potential of the thin heat pipe. As a result of evaluating the pressure resistance and effective thermal conductivity performance of the thin heat pipe, the following conclusions were drawn. 1) Using a PEEK-based polymer compound sheet, it was possible to fabricate a pressure vessel for a thin heat pipe with a pressure resistance of up to 1.0 MPa by bonding a copper thin film, and the possibility of commercialization was confirmed at a temperature below 120 ℃. 2) In the case of the effective thermal conductivity performance evaluation test, the effective thermal conductivity of ethanol was higher than that of FC72 and Novec7000, and in the case of ethanol, the maximum effective thermal conductivity was 2,851 W/mK at 3.0 W of heating.

Experimental Study on Flow Patterns and Pressure Drop Characteristics of Ice Slurry in Small Size Pipe (2) (소구경 배관내 아이스슬러리의 유동형상 및 압력강하 특성에 관한 실험적 연구(2))

  • 이동원;윤찬일;주문창
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.5
    • /
    • pp.391-397
    • /
    • 2002
  • Pressure drop were experimentally investigated for ice slurry flowing in the acrylic pipes with inner diameter of 24 mm. Ice slurry was made from 6.5% ethylene glycol-water solution, and the pipes is consisted of horizontal, vertical (upward and downward) and $90^{\circ}$ elbow pipe. The ice Packing factor (IPF) and the flow rate of the experiments were varied from 0 to 30% and from 5 to 70kg/min respectively The measured pressure drop in various pipe positions were compared with those for the solution flow (IPF=0). The pressure drop was larder than that for solution flows as the IPF increased when the flow rate was low or very high. Sharp increases in pressure drop were observed for the cases when IPF is more than 70% in horizontal and vertical pipes, whereas the pressure drop increased with the IPF simultaneously in an elbow pipe.

Pressure Predictions in Exhaust Pipe of a Single Cylinder Gasoline Engine (단기통 가솔린 기관의 배기단의 압력 예측)

  • Choi, S.C.;Lee, H.J.;Kim, S.H.;Koh, D.K.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.1
    • /
    • pp.24-29
    • /
    • 2004
  • In this study, a computer analysis has been developed for predicting the pipe pressure of the intake and exhaust manifold. To obtain the boundary conditions for a numerical analysis, one dimensional and non-steady gas dynamic calculation is performed by using the MOC(Method Of Characteristic). The main numerical parameters are the variation of the engine revolution to calculate the pulsating flow which the intake and exhaust valves arc working. The comparison of exhaust pressure in case of numerical results is quite matched with in case of experimental results. When engine revaluation is increased, the pressure amplitude showed a high value, but the pressure frequency was decreased.

  • PDF