• Title/Summary/Keyword: pipe installation

Search Result 264, Processing Time 0.025 seconds

Seismic Impact Analysis of Buried Citygas Pipes through Structural Analysis (구조해석을 통한 도시가스 매설배관의 지진 영향 분석)

  • Yoon Ho Jo;Maria Choi;Ju An Yang;Sang Il Jeon;Ji Hoon Jeon
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.19-26
    • /
    • 2023
  • Earthquakes are one of the most important disasters affecting underground structures. Urban gas underground pipes may cause safety problems of structures in the event of an earthquake. Since Korea began digital observation, the number of earthquakes has been steadily increasing. The seismic design standard for urban gas pipes was established in 2008, but it is difficult to estimate the impact of pipes in the event of an earthquake based on the installation of pipes. In this study, structural analysis was performed on PE (polyethylene pipe) pipes and PLP (polyethylene coated steel pipe) pipes, which are mainly used as buried pipes in Korea, according to environmental and pipe variables in the event of an earthquake. This study sought to find the variables of the most vulnerable buried pipe by modeling pipes through Computer Aided Engineering (CAE) and generating displacement on the ground. Through this study, it was confirmed that the larger the elastic modulus of the soil, the deeper the buried depth, the smaller the tube diameter, and the higher the pressure, the more PLP pipes are affected by earthquakes than PE. Based on these results, the vulnerable points of buried urban gas pipes are inferred and used for special inspections of buried pipes in the event of an earthquake.

Optimal valve installation of water distribution network considering abnormal water supply scenarios (비정상 물공급 시나리오를 고려한 상수도관망 최적 밸브위치 결정)

  • Lee, Seungyub;Jung, Donghwi
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.719-728
    • /
    • 2019
  • Valve in water distribution network (WDN), that controls the flow in pipes, is used to isolate a segment (a part of WDN) under abnormal water supply conditions (e.g., pipe breakage, water quality failure event). The segment isolation degrades pressure and water serviceability in neighboring area during the water service outage of the segment. Recent hydraulic and water quality failure events reported encouraging WDN valve installation based on various abnormal water supply scenarios. This study introduces a scenario-based optimal valve installation approach to optimize the number of valves, the amount of undelivered water, and a shortest water supply path indicator (i.e., Hydraulic Geodesic Index). The proposed approach is demonstrated in the valve installation of Pescara network, and the optimal valve sets are obtained under multiple scenarios and compared to the existing valve set. Pressure-driven analysis (PDA) scheme is used for a network hydraulic simulation. The optimal valve set derived from the proposed method has 19 fewer valves than the existing valve set in the network and the amount of undelivered water was also lower for the optimal valve set. Reducing the reservoir head requires a greater number of valves to achieve the similar functionality of the WDN with the optimal valve set of the original reservoir head. This study also compared the results of demand-driven analysis (DDA) and the PDA and confirmed that the latter is required for optimal valve installation.

A Study on Application of LID Technology for Improvement of Drainage Capacity of Sewer Network in Urban Watershed (도시 유역의 우수관망 통수능 개선을 위한 LID 기술 적용 연구)

  • Baek, Jongseok;Kim, Baekjoong;Lee, Sangjin;Kim, Hyungsan
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.617-625
    • /
    • 2017
  • Both domestic and overseas urban drainage systems have been actively researched to solve the problems of urban flash floods and the flood damage that is caused by local downpours. Recent urban planning has been designed to better manage the floods of decentralized rainfall-management systems, and the installation of green infrastructure and low-impact development (LID) facilities at national ministries has been recommended. In this study, we use the EPA SWMM model to construct a decentralized rainfall-management network for each small watershed, and we analyze the effect of the drainage-capacity improvement from the installation of the LID technologies in vulnerable areas that replaces the network-expansion process. In the design of the existing urban piping systems, it is common to increase the pipe size due to the increment of the impervious area, the steep terrain, and the sensitive entrance-ramp junction; however, the installation of green infrastructure and LID facilities will be sufficient for the construction of a safe urban drainage system. The applications of LID facilities and green infrastructure in urban areas can positively affect the recovery of the corresponding water cycles to a healthy standard, and it is expected that further research will occur in the future.

An Experimental Study on the Dispersion Characteristics of Seawater Injection Nozzle for Hull Cooling (선체냉각을 위한 해수분사노즐의 산포특성에 관한 실험 연구)

  • Yoon, Seoktae;Jung, Hoseok;Cho, Yongjin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.767-773
    • /
    • 2017
  • Infrared stealth is an important technology for naval ships. This technology helps improve the anti-detection performance and survivability of naval ships. In general, the infrared signature of naval ships are categorized into internal and external heat source. External signature are generated by ship surface heating by solar flux as well as the complicated heat transfer process with the surrounding weather condition. Modern naval ships are equipped with seawater injection nozzles on the outside for nuclear, biological and, chemical, and these nozzles are used to control external signature. Wide nozzle placement intervals and insufficient injection pressure, however, have reduced seawater dispersion area. To address this problem, nozzle installation standards must be established. In this study, an actual-scale experimental system was implemented to provide the evidence for nozzle installation standards in order to reduce the infrared signature of naval ships. In addition, the environmental conditions of the experiment were set up through computational fluid dynamics considering the ocean climate data and naval ship management conditions of South Korea. The dispersion distance was measured using a high-resolution thermography system. The flow rate, pipe pressure, and dispersion distance were analyzed, and the evidence for the installation of seawater injection nozzles and operation performance standards was suggested.

Numerical study for Application of H-Pile Connection Plastic Sheet Pile Retaining Wall (HCS) (H-Pile과 Plastic Sheet Pile을 결합한 토류벽체에 대한 수치해석적 연구)

  • Lee, Kyou-Nam;Lim, Hee-Dae
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.331-343
    • /
    • 2017
  • In this study to improve stability, workability and economics of the H-Pile+Earth plate or H-Pile+Earth plate+Cutoff grouting currently in use, we had developed HCS method belonging to the retaining wall which is consisting of a combination H-Pile, Plastic Sheet Pile and Steel Square Pipe for gap maintenance and reinforcement of flexible plastic Sheet Pile, and the behavior of each member composing HCS method is investigated by three-dimensional finite element analysis. To numerically analyze the behavior of the HCS method, we have performed extensive three-dimentional finite element analysis for three kinds of plastic Sheet Pile size, two kinds of H-Pile size and three kinds of H-Pile installation interval, one kinds of Steel Square Pipe and three kinds of Steel Square Pipe installation interval. After analyzing the numerical results, we found that the combinations of $P.S.P-460{\times}131.5{\times}7t$ (PS7) and H-Pile $250{\times}250{\times}9{\times}14$ (H250), $P.S.P473{\times}133.5{\times}9t$ (PS9) and H-Pile $300{\times}200{\times}9{\times}14$ (H300) is the most economical because these combinations are considered to have a stress ratio (=applied stress/allowable stress) close to that as the stiffness of H-Pile, plastic Sheet Pile and Steel Square Pipe composite increased, the horizontal displacement of the retaining wall and the vertical displacement of the upper ground decreased. Especially, due to the arching effects caused by the difference in stiffness between H-Pile and plastic Sheet Pile, a large part of the earth pressure acting on plastic Sheet Pile caused a stress transfer to H-Pile, and the stress and displacement of plastic Sheet Pile were small. Through this study, we can confirm the behavior of each member constituting the HCS method, and based on the confirmed results of this study, it can be used to apply HCS method in reasonable, stable and economical way in the future.

Reliability of Pile Driving Formula (항타공식의 신뢰도)

  • 박영호;김경석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.209-216
    • /
    • 1999
  • Prefabricated piles used for construction of highway bridges are most of steel pipe piles and few of prestressed concrete piles. Its installation and inspection are less controllable and have much uncertainty due to changes in subsoil and groundwater conditions. However, most of these piles have been controlled using outdated pile driving formula such as Hiley's formula which models just the energy conservation due to its simple applicability in the field. This formula results in overstriking or sometimes understocking due to buckling of pile head. Engineers cannot ensure by the formula whether pile is installed properly. To compensate the drawbacks of excising pile formula, parameters in Hiley's formula and 55 formula are reviewed. Final sets used in pile formula and PDA test results(E.O.I.D) are measured during pile driving along the depth. These measured results along the depth were compared with each other and with N values, so that relations between the each result could be inferred. Also the factor of safety which can be used for pile driving formula are suggested.

  • PDF

Development of Leakage-free Automatic Discharge Connect in a Submersible Pump. (수중펌프의 Leakage-free 자동탈착장치 개발)

  • Choi, Young-Seok;Lee, Kyoung-Yong;Lee, Chang-Han;Lee, Jong-Hun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.63-68
    • /
    • 2002
  • ADC(Automatic Discharge Connector) is commonly used for the easy maintenance of the submersible pumps. However, the small gap between the flange of the base plate and that of the pipe due to the head rise, the flow momentum change and the mis-installation makes leakage flow that may be a great loss to the pumping system. In this study, the performance degradation was predicted with the simple leakage flow model through the gap. The newly developed ADC was tested and the leakage performance was compared with the old one and also no-leakage piping system. The newly developed ADC reduced the leakage flow in a satisfactory way in comparison with the old model.

  • PDF

Development of Y Strainer Type Automatic Flow Rate Regulating Valve (Y 스트레이너형 자동 정유량 조절 밸브의 개발)

  • Yoon, Joon-Yong;Kwon, Woo-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.1 s.40
    • /
    • pp.49-55
    • /
    • 2007
  • An 'Y' strainer type automatic flow rate regulating valve, which functions are to remove impurities from hot water inside the pipe and to maintain a constant flow rate regardless of variations of the differential pressure between valve inlet and outlet at the same time, is developed for distributing hot water equally to several pipes with district heating or central heating system. Numerical analysis of the three dimensional turbulent flow field in a valve shape is carried out to confirm the flow field whether the designed regulator shape is acceptable or not. The final developed valve improves installation time and cost and maintenance ability comparing with set-up 'Y' strainer and regulator separately. Tolerance for the nominal flow rate is also satisfied within ${\pm}5%$.

A Study on the Development of Rolled Dry Floor Heating System for Improving Workability (현장 시공성 개선을 위한 롤타입 건식바닥난방시스템 개발)

  • Lee, Gyu-Dong;Kim, Jun-Ho;Jeong, Chang-Ho;Kim, Dong-Woo;Ogawa, Keiichiro
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.177-180
    • /
    • 2012
  • Korea residential housing generally use wet floor heating system 'Ondol' which consist of insulation cushioning, lightweight foamed concrete, hot water pipe and mortar on top of reinforced concrete slab. Wet floor heating system's installation process is too complicate and difficult to supervise field for continuing assurance quality. Also, this method has a huge impact on the progress of construction because it take a long time to cure finishing mortar and lightweight foamed concrete. Therefore, it is considered a disturbance factor of reduction of construction duration for enhancing competitiveness. In this study, we conducted an experiment about the radiant heat performance and temperature difference on upper panel of rolled dry floor heating systems which is jointly developed by Kolon global and Sumisho Metalex for remodeling housing, studio apartment and the urban-life housing.

  • PDF

Analysis on Heat Supply Piping Network for Apartment House (아파트의 온수공급배관망해석)

  • 박윤철;황광일
    • Journal of the Korean housing association
    • /
    • v.13 no.6
    • /
    • pp.89-99
    • /
    • 2002
  • The purpose of this research is to analyze the characteristics of flow rate distribution in hot-water piping networks in the apartment building. A 14-story apartment house was selected as a sample building and analyzed numerically by Hardy-Cross method. Two different piping networks, one has three vertical zones and the other of a single zone with automatic balancing valves, were compared. Some of research results are as follows; As the temperature of supply hot-water increases, the flow rate of it does by buoyancy effect, but this effect is not found in the piping network with automatic balancing valves. Non-uniformity in hot-water flow distributions to all stories in the piping system of single vertical zone can be completely reformed by the installation of either manually operated or automatic balancing valves in every story.