• Title/Summary/Keyword: pipe deformation

Search Result 298, Processing Time 0.027 seconds

Stability Analysis of Cracked cantilever beam Subjected to Follower force (유체유동 회전 외팔파이프의 안정성에 미치는 끝단질량의 영향)

  • Yoon, Han-Ik;Son, In-Soo;Kin, Dong-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.121-126
    • /
    • 2007
  • In this paper the vibration system is consisted of a rotating cantilever pipe conveying fluid and a tip mass. The equation of motion is derived applying a modeling method that employs hybrid deformation variables. 'TI1e influences of the rotating angular velocity, mass ratio and the velocity of fluid flow on the stability of a cantilever pipe are studied by the numerical method. The effect of tip mass on the stability of a rotating cantilever pipe are also studied. The influences of a tip mass, the velocity of fluid the angular velocity of a cantilever pipe and the coupling of these factors on the stability of a cantilever pipe are analytically clarified.

  • PDF

Vibration of mitred and smooth pipe bends and their components

  • Redekop, D.;Chang, D.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.747-763
    • /
    • 2009
  • In this work, the linear vibration characteristics of $90^{\circ}$ pipe bends and their cylindrical and toroidal shell components are studied. The finite element method, based on shear-deformation shell elements, is used to carry out a vibration analysis of metallic multiple $90^{\circ}$ mitred pipe bends. Single, double, and triple mitred bends are considered, as well as a smooth bend. Sample natural frequencies and mode shapes are given. To validate the procedure, comparison of the natural frequencies is made with existing results for cylindrical and toroidal shells. The influence of the multiplicity of the bend, the boundary conditions, and the various geometric parameters on the natural frequency is described. The differential quadrature method, based on classical shell theory, is used to study the vibration of components of these bends. Regression formulas are derived for cylindrical shells (straight pipes) with one or two oblique edges, and for sectorial toroidal shells (curved pipes, pipe elbows). Two types of support are considered for each case. The results given provide information about the vibration characteristics of pipe bends over a wide range of the geometric parameters.

Mechanism of steel pipe reinforcement grouting based on tunnel field measurement results (터널 현장 계측결과를 통한 강관보강 그라우팅의 거동 메커니즘)

  • Shin, Hyunkang;Jung, Hyuksang;Lee, Yong-joo;Kim, Nag-young;Ko, Sungil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.133-149
    • /
    • 2021
  • This study aims to report the behavioral mechanism of steel pipe reinforcement grouting, which is being actively used to ensure the stability of the excavation surface during tunnel excavation, based on measurements taken at the actual site. After using a 12 m steel pipe attached with a shape displacement meter and a strain gauge to reinforce the actual tunnel surface, behavioral characteristics were identified by analyzing the measured deformation and stress of the steel pipe. Taking into account that the steel pipes were overlapped every 6 m, the measured data up to 7 m of excavation were used. In addition, the behavioral characteristics of the steel pipe reinforcement according to the difference in strength were also examined by applying steel pipes with different allowable stresses (SGT275 and SGT550). As a result of analyzing the behavior of steel pipes for 7 hours after the first excavation for 1 m and before proceeding with the next excavation, the stress redistribution due to the arching effect caused by the excavation relaxation load was observed. As excavation proceeded by 1 m, the excavated section exhibited the greatest deformation during excavation of 4 to 6 m due to the stress distribution of the three-dimensional relaxation load, and deformation and stress were generated in the steel pipe installed in the ground ahead of the tunnel face. As a result of comparing the behavior of SGT275 steel pipe (yield strength 275 MPa) and SGT550 steel pipe (yield strength 550 MPa), the difference in the amount of deformation was up to 18 times and the stress was up to 12 times; the stronger the steel pipe, the better it was at responding to the relaxation load. In this study, the behavior mechanism of steel pipe reinforcement grouting in response to the arching effect due to the relaxation load was identified based on the measured data during the actual tunnel excavation, and the results were reported.

Effects of Freezing a Backfill Material under Undrained Condition on a Buried Pipe (포화 사질토 뒷채움재의 비배수 동결에 의한 매설 강관의 거동 - 실대형 모형실험 연구 -)

  • Kang, Jae-Mo;Lee, Jang-Guen;Kim, Hak-Seung;Lee, Sang-Yoon;Ryu, Byung-Hyun;Cho, Nam-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.8
    • /
    • pp.39-47
    • /
    • 2014
  • Frost heaving and thawing settlement cause unexpected stress around buried pipelines, which results in deformation and permanent demage. A large scale laboratory test has been performed to observe deformation, stress, and temperature of a buried pipe during atmospheric temperature changes. From the experimental results, the stress concentrated around the buried pipe is inevitable and deformation is caused by the frost heaving. Even though backfill materials are sandy soils which are normally assumed to be non frost susceptible, it is revealed that frost demage can happen due to drainage condition, the level of ground water table, and water content.

Limit State Assessment of SCH80 3-inch Steel Pipe Elbows Using Moment-Deformation Angle Relationship (모멘트-변형각의 관계를 이용한 SCH80 3인치 강재배관엘보의 한계상태 평가)

  • Kim, Sung-Wan;Yun, Da-Woon;Cheung, Jin-Hwan;Kim, Seong-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.122-129
    • /
    • 2020
  • To conduct probabilistic seismic fragility analysis for nuclear power plants, it is very important to define the failure modes and criteria that can represent actual serious accidents. The seismic design criteria for piping systems, however, cannot fully reflect serious accidents because they are based on plastic collapse and cannot express leakage, which is the actual limit state. Therefore, it is necessary to clearly define the limit state for reliable probabilistic seismic fragility analysis. Therefore, in this study, the limit state of the SCH80 3-inch steel pipe elbow, the vulnerable part of piping systems, was defined as leakage, and the in-plane cyclic loading test was conducted. Moreover, an attempt was made to quantify the failure criteria for the steel pipe elbow using the damage index, which was based on the dissipated energy that used the moment-deformation angle relationship.

An Experimental Study on Piping Feasibility of PE Compound Pipe for Fire Protection Service (PE 이종강관의 소방용 배관 적용성에 관한 실험적 연구)

  • Park, Jeong-Hwa;Oh, Cheon-Young;Kwark, Ji-Heon;Son, Bong-Sei
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.55-61
    • /
    • 2016
  • In this study, to determine whether it is possible to apply Polyethylene (PE) compound pipe, which was developed to solve the problem caused by the corrosion of the fire protection piping currently in usein water based fire extinguishing systems, we performed an actual mockup fire test. Since no test standard was available related to the developed compound pipe, we compared and analyzed domestic and international technical materials and test standards and selected suitable fire test standards to evaluate the performance of the PE compound pipe. we applied two fire test standards to the PE compound pipe, viz. those for CPVC and metallic pipes, and conducted a total of 6 experiments to evaluate its performance. According to the results of the first and second fire tests based on the test standard for the CPVC pipe, neither the fitting nor the piping was damaged or deformed and no leakage was observed in the pressure test, which was performed for 5 minutes. For the fire test based on the metallic pipe test standard, a total of 4 experiments were conducted. The first two experiments were conducted to simulate the wet piping system. In the results of this fire test, neither leakage nor rupture was observed from the PE compound pipe and no damage was caused, such as the secession of the PE material. However, in the next two experiments, which simulated the dry system, the PE compound pipe suffered damage and rupture, including deformation before the fire fighting water was discharged. Therefore, we found that the piping performance of the PE compound pipe did not undergo any deterioration, including fusion, deformation, or damage, in the wet piping system simulated fire test.

Effect of Embankment-Pile on Preventing Lateral Movement of Buried Pipe (성토지지말뚝의 지하매설관 측방이동 방지효과)

  • Kim, Jae-Hong;Hong, Won-Pyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.12
    • /
    • pp.63-72
    • /
    • 2014
  • To observe the behavior of lateral deformation of buried pipe and the preventing effect of embankment piles against the lateral deformation, a series of full-scale field tests were performed on a reclaimed coastal area. A buried pipe was installed in the west coast undergoing reclamation and embankment was performed by three steps. Then vertical settlement and lateral displacement were measured by the settlement plate and the inclinometer. Embankment pile system were applied to prevent the lateral displacement of buried pipe. Heave of the buried pipe slightly happens during embankment and following settlement. Finally the behavior steadily converged. The preventing effect of the embankment pile was approximately two times stronger than non-reinforcement. Both settlement and lateral displacement appear to be bigger at upper ground and smaller at lower ground.

Deformation Analysis of Carrier Pipe for Cold Shrinkable Joint (CSJ 개발을 위한 캐리어 파이프의 변형해석)

  • Lee, Yang-Chang;Lee, Joon-Seong;Lee, Ho-Jeong;Ryu, Jeong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.314-319
    • /
    • 2010
  • This paper represents the results of study on Extra High Voltage Power Cable Connection System Development. The purpose is to evaluate structural safety by numerical analysis for the relaxation of electric field concentration and by structural analysis of Carrier Pipe for easy installation of High Insulating Rubber Sleeve in the field, which is core technique of connection system. According to the results, the thickness of Carrier Pipe needs at least 9mm by optimization analysis of deformation behavior and insulating design & relaxation of electric field concentration. The result of contraction behavior of the connection part can be demonstrated with the same result of electric field relaxation analysis at the boundary of the electrode inserted into the insulating rubber sleeve.

Nonlinear vibration of FG-CNTRC curved pipes with temperature-dependent properties

  • Mingjie Liu;Shaoping Bi;Sicheng Shao;Hadi Babaei
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.553-563
    • /
    • 2023
  • In the current research, the nonlinear free vibrations of curved pipes made of functionally graded (FG) carbon nanotube reinforced composite (CNTRC) materials are investigated. It is assumed that the FG-CNTRC curved pipe is supported on a three-parameter nonlinear elastic foundation and is subjected to a uniform temperature rise. Properties of the curved nanocomposite pipe are distributed across the radius of the pipe and are given by means of a refined rule of mixtures approach. It is also assumed that all thermomechanical properties of the nanocomposite pipe are temperature-dependent. The governing equations of the curved pipe are obtained using a higher order shear deformation theory, where the traction free boundary conditions are satisfied on the top and bottom surfaces of the pipe. The von Kármán type of geometrical non-linearity is included into the formulation to consider the large deflection in the curved nanocomposite pipe. For the case of nanocomposite curved pipes which are simply supported in flexure and axially immovable, the motion equations are solved using the two-step perturbation technique. The closed-form expressions are provided to obtain the small- and large-amplitude frequencies of FG-CNTRC curved pipes rested on a nonlinear elastic foundation in thermal environment. Numerical results are given to explore the effects of CNT distribution pattern, the CNT volume fraction, thermal environment, nonlinear foundation stiffness, and geometrical parameters on the fundamental linear and nonlinear frequencies of the curved nanocomposite pipe.