• 제목/요약/키워드: pinned connections

검색결과 37건 처리시간 0.021초

고정 지점을 갖는 X-브레이싱의 탄성 면외 좌굴 (Out-of-Plane Elastic Buckling of X-Bracing System with Fixed Ends)

  • 문지호;윤기용;이학은
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.293-296
    • /
    • 2007
  • This study investigated the out-of-plane elastic buckling load and effective length factor of X-bracing system. The members of X-bracing system which are studied in this paper are rigidly attached to the structure at their end connections, and are pinned or rigidly connected at their point of intersection. The effective length factors are derived for the general case where the tension and compression brace have different material and geometrical properties.

  • PDF

접합부 강성변화를 고려한 단층 래티스 돔의 좌굴해석 (Buckling Analysis for Single Layer Latticed Domes considering the Change of Joint Rigidity)

  • 이후진;권택진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.337-344
    • /
    • 2001
  • This paper is concerned with the change of joint rigidity in estimating the degree of semi-rigidity of connections and the buckling load in a single layer latticed dome. The estimations are based on information about the ratio for the rotational stiffness of the connection to the flexural stiffness of the member and the minimum eigenvalue of a structure for pinned, semi-rigid and completely rigid cases, respectively. Connection characteristics are reflected in the ratio control of joint rigidity for the DOFs to be related using the spring element by FEM.

  • PDF

로그 모델을 사용한 반강접 철골 골조의 탄성 해석 (Elastic Analysis of Steel Frame with Semi-rigid Connections using the Log Model)

  • 이상섭;문태섭
    • 한국강구조학회 논문집
    • /
    • 제12권5호통권48호
    • /
    • pp.527-535
    • /
    • 2000
  • 철골 구조물의 접합부는 전통적으로 강접 혹은 단순 접합으로 이상화하여 설계되어 졌으나 많은 연구를 통해 이러한 모델링이 불합리할 수 있음이 밝혀져 왔다. 골조의 정확한 해석을 위해 부재의 2차효과($P-{\delta}$효과) 및 구조물 전체의 2차효과($P-{\Delta}$효과)의 고려가 필수적이고, 무엇보다도 접합부의 고유한 강성을 부여하는 것이 중요하다. 즉 실험을 통해 얻은 접합부의 모멘트-회전각을 골조 해석시 있는 그대로 반영할 수 있어야 한다. 이러기 위해 모멘트-회전각을 표현할 수 있는 단일 수식의 개발이 필요하며 지금까지 다양한 수식이 개발되어 보고되고 있다. 본 논문은 기하학적효과 및 접합부 강성을 고려할 수 있도록 이론을 통해 유도한 접합부의 강성행렬에 모멘트-회전각 관계를 표현하는 수정지수 함수 모델, 멱함수 모델 그리고 제안한 로그함수 모델을 사용하여 골조 해석을 실시하고, 그 결과를 통해 유도된 강성행렬의 적용가능성을 알아보고, 제안한 로그함수의 유효성을 밝히고자 한다.

  • PDF

Standardization of composite connections for trapezoid web profiled steel sections

  • Saggaff, A.;Tahir, M.M.;Sulaiman, A.;Ngian, S.P.;Mirza, J.
    • Structural Engineering and Mechanics
    • /
    • 제55권4호
    • /
    • pp.765-784
    • /
    • 2015
  • Connections are usually designed either as pinned usually associated with simple construction or rigid normally is associated with continuous construction. However, the actual behaviour falls in between these two extreme cases. The use of partial strength or semi-rigid connections has been encouraged by Euro-code 3 and studies on semi-continuous construction have shown substantial savings in steel weight of the overall construction. Composite connections are proposed in this paper as partial or full strength connections. Standardized connection tables are developed based on checking on all possible failure modes as suggested by "component method" for beam-to-column composite connection on major axis. Four experimental tests were carried out to validate the proposed standardised connection table. The test results showed good agreement between experimental and theoretical values with the ratio in the range between 1.06 to 1.50. All tested specimens of the composite connections showed ductile type of failure with the formation of cracks occurred on concrete slab at maximum load. No failure occurred on the Trapezoidal Web Profiled Steel Section as beam and on the British Section as column.

Estimation of semi-rigid joints by cross modal strain energy method

  • Wang, Shuqing;Zhang, Min;Liu, Fushun
    • Structural Engineering and Mechanics
    • /
    • 제47권6호
    • /
    • pp.757-771
    • /
    • 2013
  • We present a semi-rigid connection estimation method by using cross modal strain energy method. While rigid or pinned assumptions are adopted for steel frames in traditional modeling via finite element method, the actual behavior of the connections is usually neither. Semi-rigid joints enable connections to be modeled as partially restrained, which improves the quality of the model. To identify the connection stiffness and update the FE model, a newly-developed cross modal strain energy (CMSE) method is extended to incorporate the connection stiffness estimation. Meanwhile, the relations between the correction coefficients for the CMSE method are derived, which enables less modal information to be used in the estimation procedure. To illustrate the capability of the proposed parameter estimation algorithm, a four-story frame structure is demonstrated in the numerical studies. Several cases, including Semi-rigid joint(s) on single connection and on multi-connections, without and with measurement noise, are investigated. Numerical results indicate that an excellent updating is achievable and the connection stiffness can be estimated by CMSE method.

Experimental investigation of local stress distribution along the cross-section of composite steel beams near joints

  • Sangwook Park;Patricia Clayton;Todd A. Helwig;Michael D. Engelhardt;Eric B. Williamson
    • Steel and Composite Structures
    • /
    • 제51권5호
    • /
    • pp.563-573
    • /
    • 2024
  • This research experimentally evaluated the local stress distribution along the cross-section of composite beams under both positive and negative moments. The experiment utilized a large-scale, two-story, two-by-three bay steel gravity frame with a concrete on metal deck floor system. The composite shear connections, which are nominally assumed to be pinned under gravity loading, can develop non-negligible moment-resisting capacity when subjected to lateral loads. This paper discusses the local stress distribution, orshear lag effects, observed near the beam-to-column connections when subjected to combined gravity and lateral loading. Strain gauges were used for measurements along the beam depth at varying distances from the connection. The experimental data showed amplified shear lag effects near the unconnected region of the beam web and bottom flange under the applied loading conditions. These results indicate that strain does not vary linearly across the beam cross-section adjacent to the connection components. This insight has implications for the use of experimental strain gauge data in estimating beam demands near the connections. These findings can be beneficial in informing instrumentation plans for future experimental studies on composite beams.

축방향 인장력을 받는 더블 앵글 접합부의 단순모형에 관한 연구 (A Study on Simplified Model of Double Angle Connections Subjected to Axial Loads)

  • 홍갑표;양재근;이수권;송병주
    • 한국강구조학회 논문집
    • /
    • 제12권1호통권44호
    • /
    • pp.75-82
    • /
    • 2000
  • 현재 접합부에 대한 연구가 활발하게 이루어지고 있다. 구조물의 설계에서는 접합부를 강접합 또는 핀접합으로 가정하여 설계를 하고 있으나, 실제 접합부의 거동은 완전한 강접합도 핀접합도 아닌 반강접의 특성을 보이고 있다. 본 연구에서는 이러한 반강접의 분야 중 더블앵글에 의한 접합부의 거동을 파악하고자 한다. 중 저층 건물에서 가새의 지지능력을 상실하거나, 갑작스럽게 발생할지 모르는 축방향 인장력에 대한 더블앵글의 거동을 상용유한요소해석 프로그램인 ABAQUS를 이용하여 3D 비선형 해석을 수행하였다. 3D 해석결과를 이용하여 더블앵글 접합부를 단순화한 앵글모델로 유도한 후 앵글의 코너에서의 회전강성을 찾아내어 더블앵글 접합부에 대한 설계 기초자료로 제시하였다.

  • PDF

Seismic response of 3D steel buildings with hybrid connections: PRC and FRC

  • Reyes-Salazar, Alfredo;Cervantes-Lugo, Jesus Alberto;Barraza, Arturo Lopez;Bojorquez, Eden;Bojorquez, Juan
    • Steel and Composite Structures
    • /
    • 제22권1호
    • /
    • pp.113-139
    • /
    • 2016
  • The nonlinear seismic responses of steel buildings with perimeter moment resisting frames (PMRF) and interior gravity frames (IGF) are estimated, modeling the interior connections first as perfectly pinned (PPC), and then as partially restrained (PRC). Two 3D steel building models, twenty strong motions and three levels of the PRC rigidity, which are represented by the Richard Model and the Beam Line Theory, are considered. The RUAUMOKO Computer Program is used for the required time history nonlinear dynamic analysis. The responses can be significantly reduced when interior connections are considered as PRC, confirming what observed in experimental investigations. The reduction significantly varies with the strong motion, story, model, structural deformation, response parameter, and location of the structural element. The reduction is larger for global than for local response parameters; average reductions larger than 30% are observed for shears and displacements while they are about 20% for bending moments. The reduction is much larger for medium- than for low-rise buildings indicating a considerable influence of the structural complexity. It can be concluded that, the effect of the dissipated energy at PRC should not be neglected. Even for connections with relative small stiffness, which are usually idealized as PPC, the reduction can be significant. Thus, PRC can be used at IGF of steel buildings with PMRF to get more economical construction, to reduce the seismic response and to make steel building more seismic load tolerant. Much more research is needed to consider other aspects of the problem to reach more general conclusions.

SS400 강재를 사용한 개량 T-stub 반강접합부의 역학적 거동 (The Structural Behavior of Semi-Rigid Connections with Reformed T-stub by Using of SS400 Steel)

  • 이명재;양명숙;조원혁
    • 한국강구조학회 논문집
    • /
    • 제11권2호통권39호
    • /
    • pp.241-241
    • /
    • 1999
  • 강구조 건축물의 해석과 설계는 기둥-보 접합부가 완전강접이나 핀접합이라는 가정하에 일반적으로 이루어진다. 그러나 실제로는 많은 경우의 접합부형태들이 반강접합의 거동을 보이고 있다. 필자 등은 개량 T-stub로서 SM490강재를 이용하여 반강접합부의 거동을 조사한 바 있다. 본 연구의 목적은 SS400강재로 된 개량 T-stub를 이용한 기둥-보 반강접합부의 구조적 거동을 조사하기 위한 것이다. 연구방법으로서 개량 T-stub요소의 인장, 압축실험과 해석 및 개량 T-stub를 이용한 기둥-보 접합부의 단조가력 및 반복가력실험을 실시하였다. 본 연구의 실험결과로부터 개량 T-stub를 이용한 반강접합부의 적용가능성이 확인되었다.

  • PDF

Modelling and classification of tubular joint rigidity and its effect on the global response of CHS lattice girders

  • Wang, Wei;Chen, Yiyi
    • Structural Engineering and Mechanics
    • /
    • 제21권6호
    • /
    • pp.677-698
    • /
    • 2005
  • In engineering practice, tubular connections are usually assumed pinned or rigid. Recent research showed that tubular joints may exhibit non-rigid behavior under axial or bending loads. This paper is concerned with establishing a new classification for tubular joints and investigating the effect of joint rigidity on the global behavior of CHS (Circular Hollow Section) lattice girders. Parametric formulae for predicting tubular joint rigidities are proposed, which are based on the finite element analyses through systematic variation of the main geometric parameters. Comparison with test results proves the reliability of these formulae. By considering the deformation patterns of respective parts of Vierendeel lattice girders, the boundary between rigid and semirigid tubular connections is built in terms of joint bending rigidity. In order to include characteristics of joint rigidity in the global structural analysis, a type of semirigid element which can effectively reflect the interaction of two braces in K joints is introduced and validated. The numerical example of a Warren lattice girder with different joint models shows the great effect of tubular joint rigidities on the internal forces, deformation and secondary stresses.