• Title/Summary/Keyword: pile shear

Search Result 313, Processing Time 0.024 seconds

Shear Characteristics of a SCP Ground with Different Length of Sand Pile and Replacement Ratio (모래말뚝 설치심도 및 치환율이 다른 SCP지반의 전단특성)

  • Lee, Jin-Soo;Lee, Kang-Il;Lee, Young-Yoel
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.3
    • /
    • pp.9-18
    • /
    • 2011
  • This paper presents shear characteristics of a ground improved by sand piles. The sand piles have different length and diameter depending on the depth of a clayey layer. A series of CU triaxial compression tests are carried out on specimens covered with/without soft material which is similar to geotextile. The results show that the shear strength and stress ration increase as the length and the diameter of the sand pile increase. In addition, covering the specimen with the soft material appears to affect those characteristics as well. The increase of cohesion seems to be more remarkable compared to internal frictional angle.

A Study On The Engineering Properties of Rammed Aggregate and Sand Mixture Piers (쇄석과 모래 혼합다짐말뚝의 공학적 특성에 관한 연구)

  • Chun, Byung-Sik;Kim, Baek-Young;Do, Jong-Nam;Kuk, Kil-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.119-122
    • /
    • 2009
  • The gravel compaction pile method has been used as a soft foundation improvement method because bearing capacity and discharge capacity is excellent. But the discharge capacity decreased when the clogging was generated because the clay penetrate into a void of gravel compaction pile. Accordingly, the purpose of this study is to reduce the clogging generation in gravel compaction pile constructing in the soft ground and take a step to minimize a void of gravel compaction pile. And the proper mixing ratio was determined with the large scale direct shear test performed to get strength and permeability with mixing ratio of crushed stone and sand(100:0, 90:10, 85:15, 80:20, 75:25). As a result of the test, it was showed that internal friction angle was the highest at 85:15 mixing ratio of crushed stone and sand and we can make sure a tendency of internal friction angle's decrease when the mixing ratio of crushed stone and sand passed 15%.

  • PDF

Application of numerical simulation for the analysis and interpretation of pile-anchor system failure

  • Saleem, Masood
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.689-707
    • /
    • 2015
  • Progressive increase in population causing land scarcity, which is forcing construction industry to build multistory buildings having underground basements. Normally, basements are constructed for parking facility. This research work evaluates important factors which have caused the collapse of pile-anchor system at under construction five star hotel. 21 m deep excavation is carried out, to have five basements, after installation of 600 mm diameter cast in-situ contiguous concrete piles at plot periphery. To retain piles and backfill, soil anchors are installed as pit excavation is proceeded. Before collapse, anchors are designed by federal highway administration procedure and four anchor rows are installed with three strands per anchor in first row and four in remaining. However, after collapse, system is modeled and analyzed in plaxis using mohr-coulomb method. It is investigated that in-appropriate evaluation of soil properties, additional surcharge loads, lesser number of strands per anchor, shorter grouted body length and shorter pile embedment depth caused large deformations to occur which governed the collapse of east side pile wall. To resume work, old anchors are assumed to be standing at one factor of safety and then system is analyzed using finite element approach. Finally, it is concluded to use four strands per anchor in first new row and five strands in remaining three with increase in grouted and un-grouted body lengths.

Shaft Resistance Characteristics of Rock-Socketed Drilled Shafts Based on Pile Load Tests (현장 말뚝재하시험을 통한 암반에 근입된 현장타설말뚝의 주면마찰력 결정)

  • Seol, Hoon-Il;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.9
    • /
    • pp.51-63
    • /
    • 2007
  • Behavior of rock-socketed drilled shafts subjected to axial load was investigated on the basis of pile load tests. The emphasis was laid on analyzing the shear load transfer characteristics from the shafts to surrounding rock. Field load tests were performed on nine test shafts under various conditions such as weathering of rock mass, borehole roughness, pile diameters, and loading directions. The borehole roughness at each test site was profiled using a laser borehole profiler. In order to evaluate and to propose ultimate shaft resistance($f_{max}$) of drilled shafts in rock of Korean peninsular, also, database of pile load tests was developed by reviewing various literature and technical reports.

Analysis of Coefficient of Dynamic Horizontal Subgrade Reaction and Correlation Factor (α) Considering Shear Wave Velocity of Soil (지반의 전단파 속도를 고려한 동적 수평지반반력계수와 보정계수(α) 분석)

  • Kim, Gun-Woo;Lim, Hyun-Sung;Song, Su-Min;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.7-20
    • /
    • 2020
  • In this study, the dynamic behavior of a single pile foundation was investigated by using an analytical and numerical studies. The emphasis was given on quantifying a function about the coefficient of dynamic horizontal subgrade reaction from 3D analysis. Based on the numerical analysis, a modified correction factor (α), which is used to obtain the coefficient dynamic horizontal subgrade reaction, was proposed by considering shear wave velocity of soil and confining stress. It was found that the prediction by pseudo-static analysis using the proposed coefficient is in good agreement with the general trends observed by dynamic analysis, and it represents a practical improvement in the prediction of behavior for pile foundations subjected to dynamic loads.

Bearing Characteristics of Micropile-raft by Failure Mode of Soil (지반파괴거동에 따른 마이크로파일-기초의 지지특성)

  • Hwang, Tae-Hyun;Shin, Jong-Ho;Huh, In-Goo;Kwon, Oh-Yeob
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.13-25
    • /
    • 2015
  • With the increasing usages of micropile, several researchers have been studying the bearing characteristics of micropile or micropile-raft system. But most cases of research were focused on the bearing capacity of micropile-raft system on sand layer. And it was not considered that the bearing capacity of micropile-raft system was affected by the failure mode of soil and pile installation conditions. Thereby this study conducted the numerical analysis to estimate the bearing capacity of micropile-raft system on sand or silt layer with different shear failure mode. It was found that the bearing capacity of micropile-raft system installed in positive or negative angle was larger than that of the system installed in vertical angle, in the case of the sand layer undergoing the general shear failure. In the case of silt layer undergoing the punching shear failure, the bearing capacity of micropile-raft system installed only in negative angle was larger than that installed in vertical or positive angle. And the bearing capacity of foundation system in positive angle was similar to the vertical micropile-raft system.

Behaviour Characteristics of Sand Compaction Pile with varying Area Replacement Ratio (모래다집말뚝(SCP)의 치환율 변화에 따른 거동 특성 연구)

  • 박용원;김병일;윤길림;이상익;문대중;권오순
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.117-128
    • /
    • 2000
  • Sand compaction pile(SCP) is one of the ground improvement techniques which is being used for not only accelerating consolidation but also increasing bearing capacity of loose sands or soft clay grounds. In this study, laboratory model test and large-scale direct shear test were performed to investigate the effects of area replacement ratio of composite ground in order to find out the optimum value of area replacement ratio for the ground improvement purpose. Area replacement ratios of 20%, 30%, 40%, 50%, 60% were chosen respectively in the model tests to study the effects of area replacement ratio on variations of stress concentration ratio, settlement and shear strength characteristics of composite ground. In large-scale direct she4ar tests, area replacement ratios of 20%, 30%, 46% were applied to study their effects on shear strength characteristics of composite ground.

  • PDF

Pull-out Resistance Capacity Evaluation of Perfobond Rib Shear Connector (유공강판 전단연결재의 인발저항성능 평가)

  • Kim, Young-Ho;Koo, Hyun-Bon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.853-859
    • /
    • 2008
  • As a new system of steel pipe pile cap reinforcement, the application of perforated flat bar bolted to the steel pipe pile head was suggested for the improvement of structural performance of footing structure. This study investigates the structural characteristics of perforated flat bar shear connectors according to shape and diameter of hole, number of rebars passing through the hole and the depth of settlement. The result shows several requirements to ensure sufficient pull-out resistance and ductility such as that the hole diameter excluding diameter of rebar should exceed the size of aggregates; the hole should be perforated with diameter as the half of plate height; and the adequate depth of settlement should be ensured for the optimal performance.

Response Spectrum Analysis-Induced Limit Acceleration of Soil Pile Systems (지반-기초말뚝 상호작용을 고려한 응답스팩트럼의 적용 한계가속도)

  • Shin, Jong-young;Song, Su-min;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.7-22
    • /
    • 2023
  • In this study, the limit range of input acceleration was investigated based on time domain and response spectrum analyses by considering the relative density, groundwater depth, and soil type. Special attention was paid to the input acceleration and shear modulus of soil, which affect pile behavior. The surrounding soil was identified as an elastoplastic material and subjected to FLAC3D analysis using the Mohr-Coulomb and Finn models as well as FB-Multiplier analysis using a nonlinear p-y curve for soil spring. Based on the analyses, the limit range of acceleration on the pile is much higher for SP soil than for SM soil, and the groundwater level tends to reduce the limit range of input acceleration, irrespective of soil conditions. The limit range of acceleration was mainly affected by the shear modulus. The limit range of acceleration with nonlinear soil behavior is proportional to the relative density of the surrounding soil.

A study on the effect of tunnelling to adjacent single piles and pile groups considering the transverse distance of pile tips from the tunnel (말뚝의 횡방향 이격거리를 고려한 터널굴착이 인접 단독말뚝 및 군말뚝에 미치는 영향에 대한 연구)

  • Jeon, Young-Jin;Kim, Sung-Hee;Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.637-652
    • /
    • 2015
  • In the present work, a number of three-dimensional (3D) parametric numerical analyses have been carried out to study the influence of tunnelling on the behaviour of adjacent piles considering the transverse distance of the pile tip from the tunnel. Single piles and $5{\times}5$ piles inside a group with a spacing of 2.5d were considered, where d is the pile diameter. In the numerical modelling, several key issues, such as the tunnelling-induced pile settlements, the interface shear stresses, the relative shear displacements, the axial pile forces, the apparent factors of safety and zone of influence have been rigorously analysed. It has been found that when the piles are inside the influence zone, the pile head settlements are increased up to about 111% compared to those computed from the Greenfield condition. Larger pile settlements and smaller axial pile forces are induced on the piles inside the pile groups than those computed from the single piles since the piles responded as a block with the surrounding ground. Also tensile pile forces are induced associated with the upward resisting skin friction at the upper part of pile and the downward acting skin friction at the lower part of pile. On the contrary, when the piles were outside the influence zone, tunnelling-induced compressive pile forces developed. Based on computed load and displacement relation of the pile, the apparent factor of safety of the piles was reduced up to about 45%. Therefore the serviceability of the piles may be substantially reduced. The pile behaviour, when considering the single piles and the pile groups with regards to the influence zone, has been analysed by considering the key features in great details.