DOI QR코드

DOI QR Code

Response Spectrum Analysis-Induced Limit Acceleration of Soil Pile Systems

지반-기초말뚝 상호작용을 고려한 응답스팩트럼의 적용 한계가속도

  • 신종영 (롯데건설 기술연구원 토목기술연구팀) ;
  • 송수민 (연세대학교 건설환경공학과) ;
  • 정상섬 (연세대학교 건설환경공학과)
  • Received : 2023.07.10
  • Accepted : 2023.12.19
  • Published : 2023.12.31

Abstract

In this study, the limit range of input acceleration was investigated based on time domain and response spectrum analyses by considering the relative density, groundwater depth, and soil type. Special attention was paid to the input acceleration and shear modulus of soil, which affect pile behavior. The surrounding soil was identified as an elastoplastic material and subjected to FLAC3D analysis using the Mohr-Coulomb and Finn models as well as FB-Multiplier analysis using a nonlinear p-y curve for soil spring. Based on the analyses, the limit range of acceleration on the pile is much higher for SP soil than for SM soil, and the groundwater level tends to reduce the limit range of input acceleration, irrespective of soil conditions. The limit range of acceleration was mainly affected by the shear modulus. The limit range of acceleration with nonlinear soil behavior is proportional to the relative density of the surrounding soil.

본 연구에서는 입력가속도의 한계 범위를 흙의 상대밀도, 지하수위, 지반 조건을 고려하여 시간이력해석과 응답스펙트럼해석으로 분석하였다. 시간이력해석은 FLAC3D로 응답스펙트럼해석은 FB-Multipier를 이용하여 여러 지반 조건에 대한 수치해석을 실시하였다. 말뚝 주변 지반은 탄소성 물질로 가정하였다. FLAC3D 해석의 주변 지반은 Mohr-Coulomb과 Finn 모델로 설정하였고, FB-Multiplier 해석은 비선형 p-y 곡선을 이용하여 해석하였다. 비선형 지반 거동을 갖는 가속도의 한계범위는 주변 지반의 상대밀도에 비례함을 보였다. 해석 결과 SP soil이 SM soil보다 지반의 가속도의 한계범위가 훨씬 크고 지하수위는 지반조건에 관계없이 입력가속도의 한계범위를 감소시키는 경향이 있음을 알 수 있다. 또한 가속도의 한계 범위는 주로 전단탄성계수의 영향을 받는 것으로 나타났다.

Keywords

Acknowledgement

이 논문은 2019년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업입니다(No. 2018R1A6A1A08025348).

References

  1. Chen, W. F. and Mizuno, E. (1990), Nonlinear analysis in soil mechanics (No. BOOK). Amsterdam: Elsevier.
  2. Chang, D. W., Lin, B. S., and Cheng, S. H. (2007), "Dynamic Pile Behaviors Affected by Liquefaction from EQWEAP ANALYSIS", 4th International Confrence on Earthquake Geotechnical Engineering, 1336.
  3. Duncan, J. M. and Chang, C. Y. (1970), "Nonlinear Analysis of Stress and Strain in Soils", Journal of the soil mechanics and foundations division, Vol.96, No.5, pp.1629-1653. https://doi.org/10.1061/JSFEAQ.0001458
  4. FB-MULTIPIER, User's manual, Ver. 4, Ensoft inc, 2012.
  5. Hussien, M. N., Tobita, T., Iai, S., and Karray, M. (2016), "Soil-pile-structure Kinematic and Inertial Interaction Observed in Geotechnical Centrifuge Experiments", Soil Dynamics and Earthquake Engineering, Vol.89, pp.75-84. https://doi.org/10.1016/j.soildyn.2016.08.002
  6. Hardin, B. O. and Drnevich, V. P. (1972), "Shear Modulus and Damping in Soils: Measurement and Parameter Effects (Terzaghi Leture)", Journal of the soil mechanics and foundations division, Vol.98, No.6, pp.603-624. https://doi.org/10.1061/JSFEAQ.0001756
  7. Itasca Consulting Group, Inc. (2004), FLAC3D - Fast Lagrangian Analysis of Continua in Three-Dimensions, Ver. 5.0. Minneapolis: Itasca.
  8. Kim, D. (2017), "Pohang Seismic Characteristics and Earthquake Disaster Countermeasures for SOC Facilities", Special session in Seminar of Korean Society of Civil Engineering and Korean Society of Geotechnical Engineering.
  9. Kim, Y. and Ahn, K. (2012), "Behavior of Pile Groups in Multi-layers Soil under Lateral Loading", Journal of the Korean GEO-environmental Society, Vol.13, No.3, pp.85-90.
  10. Kown, S. Y., Kim, S. J., and Yoo, M. T. (2016), "Numerical Simulation of Dynamic Soil-pile Interaction for Dry Condition Observed in Centrifuge Test", Journal of the Korean Geotechnical Society, Vol.32, No.4, pp.5-14. https://doi.org/10.7843/kgs.2016.32.4.5
  11. Martin, G. R., Finn W. D, L., and Seed, H. B. (1975), "Fundamentals of Liquefaction under Cyclic Loading", Journal of Geotechnical and Geoenvironmental Engineering, Vol.101, pp.324-438. https://doi.org/10.1061/AJGEB6.0000164
  12. Lim, H. and Jeong, S. (2018), "Simplified p-y Curves under Dynamic Loading in Dry Sand", Soil Dynamics and Earthquake Engineering, Vol.113, pp.101-111. https://doi.org/10.1016/j.soildyn.2018.05.017
  13. Nogami, T. and Novak, M. (1977), "Resistance of Soil to a Horizontally Vibrating Pile", J. Earthq. Eng. Struct. Dyn., Vol.5, pp.249-261. https://doi.org/10.1002/eqe.4290050304
  14. Novak, M. (1974), "Dynamic Stiffness and Damping of Piles", Canadian Geotechnical Journal, Vol.11, pp.574-598. https://doi.org/10.1139/t74-059
  15. Novak, M. and Sheta, M. (1980), "Approximate Approach to Contact Problems of Piles In Dynamic Response of Pile Foundations: Analytical Aspects", Proceedings of the Geotechnical Engineering Division, ASCE National Convention. Florida, Oct. 30.
  16. Poulos, H. G. and Davis, H. G. (1980), "Pile Foundation Analysis and Design", New York, John Wiley & Sons.
  17. Rayhani, M. H. and El Naggar, M. H. (2008), "Numerical Modeling of Seismic Response of Rigid Foundation on Soft Soil", International Journal of Geomechanics, Vol.8, No.6, pp.336-346. https://doi.org/10.1061/(ASCE)1532-3641(2008)8:6(336)
  18. Remaud, D. (1999), "Piles under Lateral Forces: Experimental Study of Piles Group", Ph.D. Thesis, University of Nantes, France.
  19. Song, S., Lim, H., Park, S., and Jeong, S. (2022), "Proposed Dynamic p-y Curves on a Single Pile Considering Shear Wave Velocity of Soil", Earthquakes and Structures, Vol.23, No.4, pp. 353-361. https://doi.org/10.12989/EAS.2022.23.4.353
  20. Tajimi H. (1966), "Earthquake Response of Foundation Structures Report", Faculty of Science and Engineering. Tokyo, Nihon University.
  21. Yoo, M. T., Choi, J. I., Han, J. T., and Kim, M. M. (2013), "Dynamic py Curves for Dry Sand from Centrifuge Tests", Journal of earthquake engineering, Vol.17, No.7, pp.1082-1102. https://doi.org/10.1080/13632469.2013.801377