• Title/Summary/Keyword: pile parameters

Search Result 217, Processing Time 0.021 seconds

Approximate seismic displacement capacity of piles in marine oil terminals

  • Goel, Rakesh K.
    • Earthquakes and Structures
    • /
    • v.1 no.1
    • /
    • pp.129-146
    • /
    • 2010
  • This paper proposes an approximate procedure to estimate seismic displacement capacity - defined as yield displacement times the displacement ductility - of piles in marine oil terminals. It is shown that the displacement ductility of piles is relatively insensitive to most of the pile parameters within ranges typically applicable to most piles in marine oil terminals. Based on parametric studies, lower bound values of the displacement ductility of two types of piles commonly used in marine oil terminals - reinforced-concrete and hollow-steel - with either pin connection or full-moment-connection to the deck for two seismic design levels - Level 1 or Level 2 - and for two locations of the hinging in the pile - near the deck or below the ground - are proposed. The lower bound values of the displacement ductility are determined such that the material strain limits specified in the Marine Oil Terminal Engineering and Maintenance Standard (MOTEMS) are satisfied at each design level. The simplified procedure presented in this paper is intended to be used for preliminary design of piles or as a check on the results from the detailed nonlinear static pushover analysis procedure, with material strain control, specified in the MOTEMS.

Corrosion of Reinforcement and Its Effect on Structural Performance in Marine Concrete Structures

  • Yokota, Hiroshi;Kato, Ema;Iwanami, Mitsuyasu
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.297-303
    • /
    • 2007
  • This paper discusses the chloride-induced corrosion of reinforcement in marine concrete structures focusing on the variability in the progress of deterioration. Through tests and analyses of reinforced concrete slabs taken out from existing open-pile structures that have been in service for 30 to 40 years, the following topics were particularly discussed: variation in chloride ion profiles of concrete, variation in corrosion properties of reinforcement embedded in concrete, and influence of the reinforcement corrosion on the load-carrying capacity of the concrete slabs. As a result, their variability was found to be very large even in one reinforced concrete slab with almost the same conditions. It was also discussed how to determine the calculation parameters for prediction of decreasing in load-carrying capacity of concrete members with chloride-induced corrosion of reinforcement.

A Study on The Settlement Behavior of Foundations for Light-weight Structures on Clay Deposits (연약지반에서 경량구조물 기초의 침하거동에 관한 연구)

  • Lee, Kwang-Yeol;Chung, Chin-Gyo;Yun, Sung-Tae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.692-700
    • /
    • 2007
  • There are several types of foundations for light-weight structures, such as low story buildings, on soft clay deposits. Those foundations, such as piled raft, compensated foundation, mat foundation, floating foundation are commonly used rather then end-bearing piles to get more benefits on the construction and cost savings. In this study, settlement behaviors are computed and compared for several types of foundations on soft clay deposits. Also, theoretical expressions of parameters for piled raft system were provided with co-relations for design purposes. The predictions of settlements of piled rafts foundation are proposed based on the pile dimensions and design loads. From this study, the piled raft foundations is more benefits for reducing the settlement of clay deposits, and it is found that the piled raft system is applicable and effective on thick clay deposits, and that differential settlements of the foundation should be managed by designing the configuration of pile lengths.

  • PDF

A Study and Investigation on the Influence of Static and Dynamic Loading on the Properties of Handmade Persian Carpet (I) - The Effect of Static Loading -

  • Mirjalili S. A.;Sharzehee M.
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.139-145
    • /
    • 2005
  • The paper reports the physical and mechanical properties of hand-woven carpets, which have been put under static force. Two groups of wool fibres, from two parts of Iran, were prepared to spin pile yams for the carpets. Each group of the fibres included both conventional and tanned wool. Then two yam counts, $N_m$ = 4/2 and 6/2, were spun for two different knot densities. After weaving the carpets, they were put under static force and their thickness variations were measured and plotted against time, in logarithm scale. The resiliency of the carpets piles after eliminating the static force, were measured and plotted against time, in logarithm scale, too. The results were compared to each other and analysed with respect to parameters such as the type and quality of the wool fibres as well as knot density of the carpets.

Vibration Characteristics of Embedded Piles Carrying a Tip Mass (상단 집중질량을 갖는 근입 말뚝의 진동 특성)

  • Choi, Dong-Chan;Byun, Yo-Seph;Oh, Sang-Jin;Chun, Byung-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.4
    • /
    • pp.405-413
    • /
    • 2010
  • The vibration characteristics of fully and partially embedded piles with flexibly supported end carrying an eccentric tip mass are investigated. The pile model is based on the Bernoulli-Euler theory and the soil is idealized as a Winkler model for mathematical simplicity. The governing differential equations for the free vibrations of such members are solved numerically using the corresponding boundary conditions. The lowest three natural frequencies and corresponding mode shapes are calculated over a wide range of non-dimensional system parameters: the rotational spring parameter, the relative stiffness, the embedded ratio, the mass ratio, the dimensionless mass moment of inertia, and the tip mass eccentricity.

Simplified Numerical Load-transfer Finite Element Modelling of Tunnelling Effects on Piles

  • Nip, Koon Lok (Stephen);Pelecanos, Loizos
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.117-129
    • /
    • 2019
  • Tunnelling in urban environments is very common nowadays as large cities are expanding and transportation demands require the use of the underground space for creating extra capacity. Inevitably, any such new construction may have significant effects on existing nearby infrastructure and therefore relevant assessment of structural integrity and soil-structure interaction is required. Foundation piles can be rather sensitive to nearby tunnel construction and therefore their response needs to be evaluated carefully. Although detailed three-dimensional continuum finite element analysis can provide a wealth of information about this behaviour of piles, such analyses are generally very computationally demanding and may require a number of material and other model parameters to be properly calibrated. Therefore, relevant simplified approaches are used to provide a practical way for such an assessment. This paper presents a simple method where the pile is modelled with beam finite elements, pile-soil interaction is modelled with soil springs and tunnelling-induced displacements are introduced as an input boundary condition at the end of the soil springs. The performance of this approach is assessed through some examples of applications.

Prediction of Settlement of SCP Composite Ground using Genetic Algorithm (유전자 알고리즘 기법에 근거한 SCP 복합지반의 침하 예측)

  • 박현일;김윤태;이형주
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.2
    • /
    • pp.64-74
    • /
    • 2004
  • In order to accelerate the rate of consolidation settlement, to reduce settlement, and to increase bearing capacity for soft ground under quay wall, sand compaction pile method (SCP) has widely been applied. Improved ground is composite ground which is consisted of the sand pile-surrounding clayey soil. As caisson and upper structures are installed on SCP composite ground, the settlement is compositively occurred by elastic compression of sand compaction piles and also consolidation of the surrounding clay ground. In this study, the combined settlement model is proposed to predict the settlement of SCP composite ground in basis of elastic theory for sand compaction pile and consolidation theory for marine soft clay. Optimization technique was performed based on back-analysis so that real coded genetic algorithm was applied to estimate the parameters of the proposed settlement model. Case analysis was carried out for a domestic SCP composite ground to examine the applicability of the proposed prediction technique.

Influence analysis of continuous pile walls on the behavior of a soil tunnel at the shallow depth through a parametric study (민감도 분석을 통한 주열식벽체가 저토피 토사터널 거동에 미치는 영향 분석)

  • You, Kwang-Ho;Yoon, Woo-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.75-89
    • /
    • 2014
  • In recent years, utilization of underground space has been increasing in various parts of the world. In particular, open-cut method is usually applied to the shallow depth excavation. However some problems such as extreme traffic congestion and unstability of adjacent structures etc. might occur. In order to cope with these problems, the M-CAM (Modified Cellular Arch Method) method was proposed to excavate soil tunnels at shallow depth with secured enough stability and minimized construction period. In this study, sensitivity analysis was performed to predict the influence of the size of CPW(Continuous Pile Wall) and ground conditions on the behavior of the tunnel. First of all, embedded depth and diameter (or thickness) of CPW, coefficient of lateral earth pressure, and ground conditions were selected as parameters that could affect tunnel stability. Meanwhile, FLAC 2D based on finite difference method was used for numerical analysis. As a result of this study, it was checked out that embedded depth among sizes of CPW had a greatest influence on the stability of a tunnel.

Effect of Cathodic Protection of Adjacent Steel Piles on the Life of Sacrificial Anode (희생양극의 수명에 미치는 인접 강파일의 음극방식 영향)

  • Moon, Kyung-Man;Lee, Kyu-Hwan;Cho, Hwang-Rae;Lee, Myung-Hoon;Kim, Yun-Hae;Kim, Jin-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.76-81
    • /
    • 2008
  • There are two cases when the life of a sacrificial anode is shortened from the designed life: one case results from self-corrosion of the anode due to contamination by sea water in the other case, however, electrical current to protect some given steel piles overflows to protect other, adjacent non-protected steel piles. In this study, the variation of polarization potential of nine steel piles, being protected cathodically and with anode-producing current between anode and steel piles, was investigated. Parameters were varied, such as the eighth and ninth steel piles either connected electrically or not, and whether the ninth steel pile was protected by another sacrificial anode or not. The current produced by the sacrificial anode decreased when the ninth steel pile was cathodically protected by the anode of another pile. However, produced current increased when the ninth steel pile was not connected to another anode. The study concludes that the life of a sacrificial anode can be prolonged or shortened depending on whether adjacent steel piles are cathodically protected or not.

Consideration of Set-up Effect in Wave Equation Analysis of Pile Driving. (Set-up 효과를 반영한 타입말뚝의 파동이론해석)

  • 천병식;조천환
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.95-104
    • /
    • 1999
  • The bearing capacity of piles driven in soils showing set-up tendency increases with time. Though WEAP is an excellent tool for evaluating the driveability of driven pile, it has some limitations to predict reliable bearing capacity of pile after driving. It is because the existing WEAP method cannot take into account time-dependent soil properties after driving. The set-up effect should be accounted for to obtain a reliable bearing capacity by the WEAP. Unfortunately, there are no sufficient methods to take the set-up effect into consideration in wave equation analysis. This paper suggests an alternative to consider time effect in wave equation analysis through statistical analysis of dynamic load test data both at the end of driving and in the beginning of restrike. It is shown that the suggested parameters(quake and damping) would be more reliable than the existing one for the wave equation analysis of driven piles.

  • PDF