• Title/Summary/Keyword: pile load distribution

Search Result 79, Processing Time 0.03 seconds

Analysis of the Rotational Behavior of Piles under Lateral Loading Installed in Multi Layered Soil (다층지반에 근입된 수평재하 말뚝의 회전거동 분석)

  • Kang, Beong-Joon;Kyung, Doo-Hyun;Hong, Jung-Moo;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.55-64
    • /
    • 2009
  • One of the important use of piles is to furnish lateral support and nowadays it is getting highlighted due to the increase of skyscrapers, transmission towers, wind turbines, and other lateral action dependent structures. After Broms (1964), many researchers have suggested methods for estimating lateral capacity of pile. But each method assumes different earth pressure distribution and lateral earth pressure coefficient causing confusion on the part of pile designers. Lateral earth pressure, essential in lateral capacity estimation, is influenced by pile's rotational behavior under lateral load. Prasad and Chari (1999) assumed the rotation point of pile and suggested an equation of ultimate lateral load capacity. In this study, we investigate the depth of rotation point in both homogeneous soil and multi layered soil, and compare with the estimation value by previous research. Test results show that measured rotation point and estimated value by Prasad and Chari's equation show good agreement and multi layered condition affects the location of rotation point to be changed.

Behavior of Model Sheet Piles under Vertical Loads (수직하중을 받는 모형 강널말뚝의 거동)

  • 윤여원;김두균
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.5-16
    • /
    • 1998
  • In order to study the behavior of the sheet pile under vertical load in sands, model pile tests using calibration chamber are performed. For this research, five model piles, with the same section area and different degree of inclination of flange, were made. And model pile tests were conducted for each of these piles with different relative density and direction of applied load. For model pile which has the same shape, compression capacity is about 100% higher than pullout capacity and the difference increases with increasing relative density. Pullout ultimate capacity and corresponding displacement increase with increasing relative density and the pullout capacities remained almost the same irrespective of the inclination of flanges for the same density. The ultimate capacity under compression load is highest at 30$^{\circ}$ of inclination of flanges and the trend is more evident with increasing relative density. From the analysis of load distribution, the higher loading capacity at 30$^{\circ}$ of inclination of flanges with same section area may be attributed to the partial soil plug between flanges.

  • PDF

Characteristics of Distribution Ratio for Skin Friction in Group Piles (무리말뚝의 주면마찰력 분담비율 특성)

  • Lee, Jun-Dae;Ahn, Byung-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.47-54
    • /
    • 2006
  • H-pile can be more easily driven than pipe pile by pile driver and shows high skin friction and plugging effect. This experimental study was devoted to investigate skin friction of H group piles in granite soil under laboratory test. Pile arrangements $(1{\times}2,\;1{\times}3,\;2{\times}2,\;2{\times}3,\;3{\times}3)$, pile space (2D,4D,6D), and soil density $(D_r=40%,\;80%)$ were tested. The main results obtained from the model tests can be summarized as follows. Distribution ratio of skin friction for total load decreased by $48{\sim}39%$ (dense soil), $32{sim}27%$ (loose soil) as piles space ratio increases in case of $3{\times}3$ group piles. And the distribution ratio of skin friction by pile settlements under loose soil decreased by about $58{\sim}33.2%$ in $2{\times}2$ group piles and about $65{\sim}38%$ in $3{\times}3$ group piles respectively.

Characteristics on Pullout Behavior of Belled Tension Pile in Sandy Soils (사질토지반의 선단확장형말뚝의 인발거동 특성)

  • Cho, Seok-Ho;Kim, Hak-Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3599-3609
    • /
    • 2010
  • Recently, the construction of coastal structures and high-rise structures against the horizontal and uplift forces increases with the developing the coastal developments. Especially the application of belled tension pile as foundation type to effectively resist uplift force is increasing in coastal structures. However, research on pullout resistance of belled tension pile has been limited and not yet been fully performed. Therefore, the pullout load tests of belled tension piles in four overseas sites were performed, then the bearing capacity, characteristics on load-displacement of piles and load distribution considering skin friction were investigated in this paper. In addition, the limit pullout bearing capacity calculated by the three-dimensional finite element analysis and theoretical methods were compared with values of in-situ test.

Characteristics of Behavior of Steel Sheet Pile installed by Vibratory Pile Driver (진동타입기에 의해 시공되는 강널말뚝의 거동특성)

  • Lee, Seung Hyun;Kim, Byoung Il;Kim, Zu Cheol;Kim, Jeong Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1C
    • /
    • pp.27-35
    • /
    • 2010
  • Instrumented steel sheet piles being driven by vibratory pile driver were installed in granular soil deposit and behaviors of the sheet piles were investigated. One of the instrumented steel sheet pile was installed without clutch and the other was installed with clutch. Sheet pile with clutch means that of installed in connection with pre-installed sheet pile. Penetration rates of sheet piles measured from depth measuring drum has shown that interlock friction had great effect on penetration speed of sheet pile. Clutch friction shows irregular distribution along the depths of penetration and its magnitude was estimated as 19.1kN/m. According to the accelerations obtained from accelerometer, it was seen that steel sheet pile behaviored nearly as a rigid body. Efficiency factor of an isolated sheet pile was 0.42 and that of the connected sheet pile was 0.71. Shapes of dynamic load transfer curves obtained from analysis of measuring devices was similar to those suggested by Dierssen.

FE Analysis of Rock-Socketed Drilled Shafts Using Load Transfer Method (유한요소해석을 통한 암반에 근입된 현장타설말뚝의 하중전이거동 분석)

  • Seol, Hoon-Il;Jeong, Sang-Seom;Kim, Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.33-40
    • /
    • 2008
  • The load distribution and deformation of rock-socketed drilled shafts subjected to axial loads are evaluated by a load-transfer method. The emphasis is on quantifying the effect of coupled soil resistance in rock-socketed drilled shafts using the 2D elasto-plastic finite element analysis. Slippage and shear load transfer behavior at the pile-soil interface are investigated by using a user-subroutine interface model (FRlC). It is shown that the coupled soil resistance provides the influence of pile toe settlement as the shaft resistance is increased to an ultimate limit state. The results show that the coupling effect is closely related to the value of pile diameter over rock mass modulus (D/$E_{mass}$) and the ratio of total shaft resistance against total applied load ($R_s$/Q). Through comparisons with field case studies, the 2D numerical analysis reseanably presented load transfer of pile and coupling effect due to the transfer of shaft shear loading, and thus represents a significant improvement in the prediction of load deflections of drilled shafts.

Behaviors of Soil-cement Piles in Soft Ground (연약지반에 설치된 소일시멘트말뚝의 거동)

  • Kim, Young-Uk;Kim, Byoung-Il;Xiaohong Bai
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.45-51
    • /
    • 2003
  • This study was undertaken to investigate behavior characteristics of soil-cement piles in composite foundations through computer analysis. The soil-cement piles with cushion subjected to the vertical central loading only were analyzed using the program - “ABAQUS”. The investigation was conducted for various conditions including soil property, pile dimension, replacement ratio, pile/soil modular ratio, and load intensity. The results of analysis provided not only the load transfer and settlement behaviors but also the effective pile length and load distribution between a pile and soil. It was concluded that in the design of composite foundations, the modular ratio and replacement ratio are two design parameters.

The Load Distribution Characteristics of Pile Group under Lateral Loading (수평력을 받는 무리말뚝의 하중분담특성)

  • Ahn, Byungchul;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.3
    • /
    • pp.17-22
    • /
    • 2010
  • This paper analyzed the characteristics of p-multiplier and the load distribution of H-pile group installed in weathered soil under horizontal loading. The results of this study conducted in pile arrangement ($2{\times}3$, $3{\times}3$), the pile center to center spacing (2D, 4D, 6D), and soil density (relative density: 40%, 80%) were drawn as follows. As to the average horizontal loading applied to each pile in pile groups, the fewer number of piles was, the larger average horizontal resistance became. As the result of analysis on p-y curves of single piles and pile groups according to the pile distance and the soil density, as the pile spacing was increased from 2D to 6D, the interaction coefficients of pile group showed 0.85~0.94 (piles in the front row), 0.57~0.79 (piles in the middle row), and 0.60~0.71 (piles in the rear row) in the loose ground and showed 0.76~0.82 (piles in the front row), 0.58~0.73 (piles in the middle row), and 0.53~0.70 (piles in the rear row) in the dense ground. As above, the wider pile distance was, the larger interaction coefficient value was shown among piles. In addition, piles in the front row showed bigger interaction coefficients than that of piles in the middle and back row.

Pile Load Transition and Ground Behaviour due to Development of Tunnel Volume Loss under Grouped pile in Sand (사질토 지반에서 터널체적손실 증가에 따른 군말뚝의 하중변이와 지반거동)

  • Oh, Dong Wook;Lee, Yong Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.485-495
    • /
    • 2017
  • A development of underground space is very useful solution to slove problem occurred from ground surface enlargement in urban areas due to the growth of population, tunnelling is the most popular way and widely used. Researches regarding tunneling-induced pile-soil interactive behaviour have been conducted by many researchers. A study on pile axial force distribution due to tunnelling through laboratory model test, however, is being rarely carried out. In this study, therefore, authors investigate ground behaviour due to tunnelling below grouped pile subjected vertical load as well as pile axial force distribution. A concept of volume loss is used to express tunnel excavation, which is normally applied to 1~2% for tunnelling in soft ground. In this study, however, 10% of that applied to investigate failure mechanism. As a result of laboratory model test, a decrease of pile axial force occurs at 1.5% of volume loss, settlement of grouped pile is 1.2~4.7 times greater than the adjacent ground surface one. Ground deformations at 1.5% of volume loss are measured using Close Range Photogrammetry and compared with results from numerical analysis.

Load-Settlement Characteristics of Drilled Shafts Reinforced by Rockbolts (락볼트로 보강된 심형기초의 하중-침하 분석)

  • 윤경식;이대수;정상섬
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.366-373
    • /
    • 2002
  • This paper describes the load distribution and settlement of rockbolted-drilled shafts subjected to axial and lateral loads with the view to shortening the embedded depth of the pile shaft. The emphasis was on quantifying the reinforcing effects of rockbolts placed from the shafts to surrounding weathered rocks based on small-scale model tests peformed on instrumented piles. The major influencing parameters on reinforcing drilled shaft behavior are the number, the positions on the shaft, the grade, and the inclination angle at which the rockbolts are placed. The model tests was 1/40 scaled simulations of the behavior of the drilled shafts with varying combinations of the major influencing parameters. The incremental effects of reinforcement based on the various parameters have been weighed against load transfer characteristics before and after rockbolt installations.

  • PDF