• Title/Summary/Keyword: pile diameter

Search Result 345, Processing Time 0.03 seconds

Interaction analysis of a building frame supported on pile groups

  • Dode, P.A.;Chore, H.S.;Agrawal, D.K.
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.305-318
    • /
    • 2014
  • The study deals with the physical modeling of a typical building frame resting on pile foundation and embedded in cohesive soil mass using complete three-dimensional finite element analysis. Two different pile groups comprising four piles ($2{\times}2$) and nine piles ($3{\times}3$) are considered. Further, three different pile diameters along with the various pile spacings are considered. The elements of the superstructure frame and those of the pile foundation are descretized using twenty-node isoparametric continuum elements. The interface between the pile and pile and soil is idealized using sixteen-node isoparametric surface elements. The current study is an improved version of finite element modeling for the soil elements compared to the one reported in the literature (Chore and Ingle 2008). The soil elements are discretized using eight-, nine- and twelve-node continuum elements. Both the elements of superstructure and substructure (i.e., foundation) including soil are assumed to remain in the elastic state at all the time. The interaction analysis is carried out using sub-structure approach in the parametric study. The total stress analysis is carried out considering the immediate behaviour of the soil. The effect of various parameters of the pile foundation such as spacing in a group and number piles in a group, along with pile diameter, is evaluated on the response of superstructure. The response includes the displacement at the top of the frame and bending moment in columns. The soil-structure interaction effect is found to increase displacement in the range of 58 -152% and increase the absolute maximum positive and negative moments in the column in the range of 14-15% and 26-28%, respectively. The effect of the soil- structure interaction is observed to be significant for the configuration of the pile groups and the soil considered in the present study.

Experimental Study on the End Bearing Capacity of the Pile in a Group Pile (무리말뚝을 구성하는 개별말뚝의 선단지지력에 대한 실험연구)

  • Na, Yong Soo;Lee, Sang Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.6
    • /
    • pp.27-38
    • /
    • 2019
  • Bearing capacity of a pile in homogeneous soil is the sum of end bearing and skin resistance, and the skin resistance is more prominent in sandy soil. Bearing capacity of a pile in pile groups especially in sandy ground should be designed under the consideration of the influence by the adjacent piles. In this study, the end bearing capacity of a pile in pile groups was experimentally investigated. For this purpose, piles were installed in sandy ground in a circular test box, and end bearing - settlement behavior of the pile was measured while the pile was loaded. As the results, end bearing - settlement relation curves of the piles showed a distinct limit value. Limit value of the end bearing was little affected by skin friction and pile diameter, and it became a constant value as pile penetrates deeper. End bearing was not affected by the adjacent piles in a group of piles, when their clearance was larger than the pile diameter.

Effects of pile geometry on bearing capacity of open-ended piles driven into sands

  • Kumara, Janaka J.;Kurashina, Takashi;Kikuchi, Yoshiaki
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.385-400
    • /
    • 2016
  • Bearing capacity of open-ended piles depends largely on inner frictional resistance, which is influenced by the degree of soil plugging. While a fully-plugged open-ended pile produces a bearing capacity similar to a closed-ended pile, fully coring (or unplugged) pile produces a much smaller bearing capacity. In general, open-ended piles are driven under partially-plugged mode. The formation of soil plug may depend on many factors, including wall thickness at the pile tip (or inner pile diameter), sleeve height of the thickened wall at the pile tip and relative density. In this paper, we studied the effects of wall thickness at the pile base and sleeve height of the thickened wall at the pile tip on bearing capacity using laboratory model tests. The tests were conducted on a medium dense sandy ground. The model piles with different tip thicknesses and sleeve heights of thickened wall at the pile tip were tested. The results were also discussed using the incremental filling ratio and plug length ratio, which are generally used to describe the degree of soil plugging. The results showed that the bearing capacity increases with tip thickness. The bearing capacity of piles of smaller sleeve length (e.g., ${\leq}1D$; D is pile outer diameter) was found to be dependent on the sleeve length, while it is independent on the sleeve length of greater than a 1D length. We also found that the soil plug height is dependent on wall thickness at the pile base. The results on the incremental filling ratio revealed that the thinner walled piles produce higher degree of soil plugging at greater penetration depths. The results also revealed that the soil plug height is dependent on sleeve length of up to 2D length and independent beyond a 2D length. The piles of a smaller sleeve length (e.g., ${\leq}1D$) produce higher degree of soil plugging at shallow penetration depths while the piles of a larger sleeve length (e.g., ${\geq}2D$) produce higher degree of soil plugging at greater penetration depths.

Shear Performance of Large-Diameter Composite PHC Pile Strengthened by In-Filled Concrete and Shear Reinforcement (속채움 콘크리트와 전단철근을 사용한 대구경 합성 PHC말뚝의 전단보강 성능)

  • Hyun, Jung-Hwan;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.67-73
    • /
    • 2017
  • Recently, the demand for large diameter piles has been rapidly increased in order to secure the allowable bearing capacity of pile foundation due to the increase of large structures such as high rise buildings. In this study, to improve the shear capacity of a conventional PHC pile, a large diameter composite PHC pile strengthened by in-filled concrete and shear reinforcement was manufactured. All the piles were tested according to the shear strength test method of Korean Standard. As a result of the shear test, the F-type piles which are produced without shear reinforcement occurred abrupt horizontal cracks after flexural and inclined shear cracks occurred. On the contrary, the FT-type piles which are produced with shear reinforcement exhibited stable flexural and inclined shear cracks uniformly over the entire pile without abrupt horizontal cracks. Furthermore, the maximum load of the large diameter composite PHC pile improved to 2.9 times in the F series, and more than 3.3 times in the FT series compared to the conventional PHC pile. This result indicated that FT-type piles had excellent composite behavior due to the shear reinforcement and effectively prevented the unstable growth of inclined shear cracks.

Analysis far Behavior of Substructure Considering Characteristics of Pile and Soil (Pile과 지반특성을 고려한 기초구조물의 거동해석)

  • 안주옥;공천석;정영묵;임정열
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.253-259
    • /
    • 2000
  • This thesis investigated the behavior of super structure by varying the factors such as the change of pile rigidity, the characteristics of soil and the constraint condition of support. The results of this study are as follows; 1. The pile rigidity in the Fig 3.3 computed by the rotating deformed plane method becomes the elastic range at approximately about 5.1 m (D : 1.0 m) below the ground level. This result is consistent with the previous study that the pile deformation occurs approximately 3 to 6 times pile diameter from the pile head. 2. The values of forces and deformations for the structure-pile system in Y-direction appeared larger than that in X-direction, since the pile rigidity and constraint condition of support were changed as shown Fig.3.5 to 3.8. 3. The current practice for the analysis of structure-pile system has not considered the variation of pile rigidity and the constraint condition of support. So, the analysis of structure-pile system with large difference in super-structure rigidity must includes these factors in both X and Y directions.

  • PDF

Dynamic response of pile foundations with flexible slabs

  • Kaynia, Amir M.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.495-506
    • /
    • 2012
  • An elasto-dynamic model for pile-soil-pile interaction together with a simple plate model is used in this study to assess the effect of flexible foundation slabs on the dynamic response of pile groups. To this end, different pile configurations with various slab thicknessesare considered in two soil media with low and high elastic moduli. The analyses include dynamic impedances and seismic responses of pile-group foundations. The presented results indicate that the stiffness and damping of pile foundations increase with thickness of the foundation slab; however, the results approach those for rigid slab as the slab thickness approaches twice the pile diameter for the cases considered in this study. The results also reveal that pile foundations with flexible slabs may amplify the earthquake motions by as much as 10 percent in the low to intermediate frequency ranges.

Analysis of the lateral displacement to the Large Diameter Bored Pile based on the application of the Lateral coefficient of subgrade reaction (수평지반반력계수에 따른 대구경 현장타설말뚝의 수평변위 분석)

  • Chae, Young-Su;Kim, Nam-Ho;Bang, Ei-Souk;Lee, Kyoung-Jea
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.528-535
    • /
    • 2005
  • Using the case of design to the Large diameter Bored Pile, We showed the various method to estimate the Lateral coefficient of subgrade reaction and analyzed the lateral displacement behavior according to the characteristics of sub layer distribution. According to the study, Mutual relation to the N value and the soil modulus of deformation showed 400N to 800N to the fine grained soil and weathered soil. It showed simular tendancy with the proposed expression of Schmertmann. But Weathered rock was over estimated as 4,200N. $k_h$ to the sedimentory soil and weathered rock each showed these orded of Schmertmann-PMT-2,800N and Schmertmann-2,800N-PMT. As the factor($\alpha$) 4 was applied to the estimation in weathered rock, $k_h$ to the PMT was calculate as a big value. If the pile is long and the pile is surpported to the soil, Lateral displacement was in inverse proportion ratio to the value of $k_h$. But the case of shallow soil layer(early bedrock) and the short pile, Lateral displacement was affected by the behavior of socheted pile to the bedrock not by the upper soil layer.

  • PDF

Case Studiy on Measurement of End Bearing Capacity for Large Diameter Drilled Shaft Constructed in Fault Zone using Loading Test (선단유압재하시험을 이용한 단층파쇄대에 설치된 대구경 현장타설말뚝의 선단지지력 측정 사례)

  • Jung, Chang-Kyu;Kim, Tae-Hoon;Jung, Sung-Min;Hwang, Kun-Bae;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.74-81
    • /
    • 2004
  • In this study, static end loading tests with load transfer measurement were accomplished for large diameter drilled shaft constructed in fault zone. Yield pile capacity (or ultimate pile capacity) from load-settlement curve was determined and axial load transfer behavior was measurd. The end bearing capacity was increased 2 times due to grouting the toe ground under pile base.

  • PDF

The Pullout Behavior of a Large-diameter Batter ]Reaction Piles During Static Pile Load Test for a Large Diameter Socketed Pipe Pile (대구경 말뚝의 정재하시험시 대구경 경사반력말뚝의 인발거동)

  • 김상옥;성인출;박성철;정창규;최용규
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.5-16
    • /
    • 2002
  • The pullout behavior of large-diameter steel pipe piles(diameter = 2,500mm, length = 38~40m), which were designed as compression piles but used as reaction piles during a static compression load test on a pile(diameter = 1,000m, length = 40m), was investigated. The steel pipe piles were driven by 20m into a marine deposit and weathered soil layer and then socketed by 10m into underlying weathered and soft rock layers. The sockets and pipe were filled with reinforced concrete. The steel pipe and concrete in the steel pipe zone and concrete and rebars in the socketed zone were fully instrumented to measure strains in each zone. The pullout deformations of the reaction pile heads were measured by LVDTs. Over the course of the study, a maximum uplift deformation of 7mm was measured in the heads of reaction piles when loaded to 10MN, and 1mm of residual uplift deflection was measured. In the reaction piles, about 83% and about 12% of the applied pullout loads were transferred in the weathered rock layer and in the soft rock layer, respectively. Also, at an uplift force of 10MN, shear stresses due to the uplift in the weathered rock layer md soft rock layer were developed as much as 125.3kPa and 61.8kPa, respectively. Thus, the weathered rock layer should be utilized as resisting layer in which frictional farce could be mobilized greatly.

Analysis of Laterally Loaded Single Piles using Pressuremeter Test (공내재하시험을 이용한 수평하중을 받는 단말뚝의 해석)

  • Lee, Yong-An;Lee, Ju-Hyung;Chung, Moon-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1051-1060
    • /
    • 2010
  • In this study, the pressuremeter test (PMT) and the standard penetration test (SPT) were performed on the lateral pile loading tests site to evaluate the coefficient of subgrade reaction, which is used for load-deformation behavior analysis of laterally loaded piles by elastic subgrade reaction method. As a result, widely used empirical formulas of the coefficient of subgrade reaction by N values of SPT is evaluated conservatively lateral behavior of piles. While the method of directly used PMT results and evaluation method of the coefficient of subgrade reaction considering deformation moduli of soil and a pile diameter that is able to estimate very similar to actual load-deformation behavior of laterally loaded piles in deformation range of 0.5%-1.0% of a pile diameter.

  • PDF