• 제목/요약/키워드: pikromycin

검색결과 16건 처리시간 0.02초

Biosynthesis of Plant-Specific Flavones and Flavonols in Streptomyces venezuelae

  • Park, Sung-Ryeol;Paik, Ji-Hye;Ahn, Mi-Sun;Park, Je-Won;Yoon, Yeo-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권9호
    • /
    • pp.1295-1299
    • /
    • 2010
  • Recently, recombinant Streptomyces venezuelae has been established as a heterologous host for microbial production of flavanones and stilbenes, a class of plant-specific polyketides. In the present work, we expanded the applicability of the S. venezuelae system to the production of more diverse plant polyketides including flavones and flavonols. A plasmid with the synthetic codon-optimized flavone synthase I gene from Petroselium crispum was introduced to S. venezuelae DHS2001 bearing a deletion of the native pikromycin polyketide synthase gene, and the resulting strain generated flavones from exogenously fed flavanones. In addition, a recombinant S. venezuelae mutant expressing a codon-optimized flavanone $3{\beta}$-hydroxylase gene from Citrus siensis and a flavonol synthase gene from Citrus unshius also successfully produced flavonols.

Biosynthesis of Glycosylated Derivatives of Tylosin in Streptomyces venezuelae

  • Han, Ah-Reum;Park, Sung-Ryeol;Park, Je-Won;Lee, Eun-Yeol;Kim, Dong-Myung;Kim, Byung-Gee;Yoon, Yeo-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권6호
    • /
    • pp.613-616
    • /
    • 2011
  • Streptomyces venezuelae YJ028, bearing a deletion of the entire biosynthetic gene cluster encoding the pikromycin polyketide synthases and desosamine biosynthetic enzymes, was used as a bioconversion system for combinatorial biosynthesis of glycosylated derivatives of tylosin. Two engineered deoxysugar biosynthetic pathways for the biosynthesis of TDP-3-O-demethyl-D-chalcose or TDP-L-rhamnose in conjunction with the glycosyltransferaseauxiliary protein pair DesVII/DesVIII were expressed in a S. venezuelae YJ028 mutant strain. Supplementation of each mutant strain capable of producing TDP-3-O-demethyl-D-chalcose or TDP-L-rhamnose with tylosin aglycone tylactone resulted in the production of the 3-O-demethyl-D-chalcose, D-quinovose, or L-rhamnose-glycosylated tylactone.

Heterologous Expression of Daptomycin Biosynthetic Gene Cluster Via Streptomyces Artificial Chromosome Vector System

  • Choi, Seunghee;Nah, Hee-Ju;Choi, Sisun;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권12호
    • /
    • pp.1931-1937
    • /
    • 2019
  • The heterologous expression of the Streptomyces natural product (NP) biosynthetic gene cluster (BGC) has become an attractive strategy for the activation, titer improvement, and refactoring of valuable and cryptic NP BGCs. Previously, a Streptomyces artificial chromosomal vector system, pSBAC, was applied successfully to the precise cloning of large-sized polyketide BGCs, including immunosuppressant tautomycetin and antibiotic pikromycin, which led to stable and comparable production in several heterologous hosts. To further validate the pSBAC system as a generally applicable heterologous expression system, the daptomycin BGC of S. roseosporus was cloned and expressed heterologously in a model Streptomyces cell factory. A 65-kb daptomycin BGC, which belongs to a non-ribosomal polypeptide synthetase (NRPS) family, was cloned precisely into the pSBAC which resulted in 28.9 mg/l of daptomycin and its derivatives in S. coelicolor M511(a daptomycin non-producing heterologous host). These results suggest that a pSBAC-driven heterologous expression strategy is an ideal approach for producing low and inconsistent Streptomyces NRPS-family NPs, such as daptomycin, which are produced low and inconsistent in native host.

Hydroxylation of Indole by PikC Cytochrome P450 from Streptomyces venezuelae and Engineering Its Catalytic Activity by Site-Directed Mutagenesis

  • Lee Sang-Kil;Park Je-Won;Park Sung-Ryeol;Ahn Jong-Seog;Choi Cha-Yong;Yoon Yeo-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.974-978
    • /
    • 2006
  • The cytochrome P450 monooxygenase from the pikromycin biosynthetic gene cluster in Streptomyces venezuelae, known as PikC, was observed to hydroxylate the unnatural substrate indole to indigo. Furthermore, the site-directed mutagenesis of PikC monooxygenase led to the mutant enzyme F171Q, in which Phe171 was altered to Gln, with enhanced activity for the hydroxylation of indole. From enzyme kinetic studies, F171Q showed an approximately five-fold higher catalytic efficiency compared with the wild-type PikC. Therefore, these results demonstrate the promising application of P450s originating from Streptomyces, normally involved in polyketide biosynthesis, to generate a diverse array of other industrially useful compounds.

Identification and Functional Characterization of an afsR Homolog Regulatory Gene from Streptomyces venezuelae ATCC 15439

  • Maharjan, Sushila;Oh, Tae-Jin;Lee, Hei-Chan;Sohng, Jae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권2호
    • /
    • pp.121-127
    • /
    • 2009
  • Sequencing analysis of a 5-kb DNA fragment from Streptomyces venezuelae ATCC 15439 revealed the presence of one 3.1-kb open reading frame(ORF), designated as afsR-sv. The deduced product of afsR-sv(1,056 aa) was found to have high homology with the global regulatory protein AfsR. Homology-based analysis showed that aftR-sv represents a transcriptional activator belonging to the Streptomyces antibiotic regulatory protein(SARP) family that includes an N-terminal SARP domain containing a bacterial transcriptional activation domain(BTAD), an NB-ARC domain, and a C-terminal tetratricopeptide repeat domain. Gene expression analysis by reverse transcriptase PCR(RT-PCR) demonstrated the activation of transcription of genes belonging to pikromycin production, when aftR-sv was overexpressed in S. venezuelae. Heterologous expression of the aftR-sv in different Streptomyces strains resulted in increased production of the respective antibiotics, suggesting that afsR-sv is a positive regulator of antibiotics biosynthesis.

Genetically Engineered Biosynthesis of Macrolide Derivatives Including 4-Amino-4,6-Dideoxy-L-Glucose from Streptomyces venezuelae YJ003-OTBP3

  • Pageni, Binod Babu;Oh, Tae-Jin;Liou, Kwang-Kyoung;Yoon, Yeo-Joon;Sohng, Jae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.88-94
    • /
    • 2008
  • Two sugar biosynthetic cassette plasm ids were used to direct the biosynthesis of a deoxyaminosugar. The pOTBP1 plasmid containing TDP-glucose synthase (desIII), TDP-glucose-4,6-dehydratase (desIV), and glycosyltransferase (desVII/desVIII) was constructed and transformed into S. venezuelae YJ003, a strain in which the entire gene cluster of desosamine biosynthesis is deleted. The expression plasmid pOTBP3 containing 4-aminotransferase (gerB) and 3,5-epimerase (orf9) was transformed again into S. venezuelae YJ003-OTBP1 to obtain S. venezuelae YJ003-OTBP3 for the production of 4-amino-4,6-dideoxy-L-glucose derivatives. The crude extracts obtained from S. venezuelae ATCC 15439, S. venezuelae YJ003, and S. venezuelae YJ003-OTBP3 were further analyzed by TLC, bioassay, HPLC, ESI/MS, LC/MS, and MS/MS. The results of our study clearly shows that S. venezuelae YJ003-OTBP3 constructs other new hybrid macrolide derivatives including 4-amino-4,6-dideoxy-L-glycosylated YC-17 (3, [M+ $Na^+$] m/z=464.5), methymycin (4, m/z=480.5), novamethymycin (6, m/z=496.5), and pikromycin (5, m/z=536.5) from a 12-membered ring aglycon (10-deoxymethynolide, 1) and a 14-membered ring aglycon (narbonolide, 2). These results suggest a successful engineering of a deoxysugar pathway to generate novel hybrid macrolide derivatives, including deoxyaminosugar.