• Title/Summary/Keyword: piggyBac

Search Result 12, Processing Time 0.032 seconds

Transposon piggyBac mediated Ipax6 Expression in Malaria Vector Anopheles stephensi (말라리아 매개 모기 Anopheles stephensi에서 트랜스포존 piggyBac을 이용한 Pax6 발현)

  • Koo Hyeyoung
    • Development and Reproduction
    • /
    • v.8 no.1
    • /
    • pp.19-25
    • /
    • 2004
  • Pax6, a member of the highly conserved homeobox gene family, is known to be expressed in spatially and temporally restricted pattern during embryogenesis. To examine the spatial expression pattern of Pax6 in malaria vector mosquito Anopheles stephemi, in different molecular environment, the germ line transformation technique using piggyBac transposon combined with the use of Pax6 specific 3xp3-EGFP marker was utilized. Four transgenic lines with a transformation rate of 6.7% were established. Transgenes were stably expressed in subsequent several generations. The transgenic lines showed 3 different expression pattern with spatial specificity, possibly due to enhancing and/or silencing position effects. In two transgenic lines, noble expression pattern of Pax6 was observed in the region that has not been previously reported in any animal species. The results show that the tranposon piggyBac mediated germ line transformation system can be used as an efficient tool for the generation of diverse spatially restricted reporter gene expression.

  • PDF

Germ Line Transformation of the Silkworm, Bombyx mori L. with a piggyBac Vector Harboring the Human Lactoferrin Gene (락토페린 유전자도입 piggyBac 벡터에 의한 누에 형질전환)

  • Kim, Yong-Soon;Sohn, Bong-Hee;Kim, Kee-Young;Jung, I-Yeon;Kim, Mi-Ja;Kang, Pil-Don
    • Journal of Sericultural and Entomological Science
    • /
    • v.49 no.2
    • /
    • pp.37-42
    • /
    • 2007
  • Lactoferrin, an ion-binding 80-kDa glycoprotein, has been suggested to have many biologic activities, such as facilitating ion absorption and having antimicrobial and anti-inflammatory effects. Several of these activities are likely to only be facilitated by human lactoferrin because they depend on the binding of human lactoferrin to specific receptor. To produce recombinant human lactoferrin to animal foods using transgenic silkworm, Bombyx mori L, we have cloned and sequenced the cDNA encoding for a human lactoferrin (HLf) from the mRNA in mammary tumor line (GI-101). As a result, the 2.5-kb fragment of HLf gene was cloned with pGEM-T vector and then this fragment was sequenced. In the nucleotide sequence analysis, single open reading frame of the 2,136-bp encoding for a polypeptide of 712 amino acid residues was detected. On the other hand, we constructed a recombinant plasmid(pPT-HLf), containing human lactoferrin gene for germ line transformation of the silkworm using a piggyBac transposon-derived vector. A nonautonomous helper plasmid encodes the piggyBac transposase. Approximately 6.7% of individuals in the G0 silkworms expressed green fluorescent protein (GFP). PCR analyses of GFP-positive silkworms (G0 and G1) revealed that independent insertions occurred frequently. Furthermore, Western blot analysis showed that the recombinant HLf expressed in hemolymph has the same molecular weight (80 kDa) as a native protein. On the basis of these experiments, expression of HLf in next generation of transgenic silkworm is now in process.

Non-Viral Transgenesis via Direct In Ovo Lipofection in Quail (비바이러스 In Ovo 직접주입법에 의한 메추리 형질전환 시스템)

  • Park, Tae Sub;Han, Jae Yong
    • Korean Journal of Poultry Science
    • /
    • v.42 no.3
    • /
    • pp.239-245
    • /
    • 2015
  • Transgenic animals have been widely used for developmental biology studies, as disease models, and even in industry such as transgenic bioreactor animals. For transgenic birds, quail has the great advantages of small body size, short generation time, and frequent egg production. To date, retroviral or lentiviral transduction has been used to generate transgenic quail for various purposes. However, the efficiency of transgenic offspring production with these methods is relatively low and viral vector usage has safety issues. Unfortunately, non-viral transgenesis has not been established in quail due to a deficiency of stem cell and germ cell culture systems. In this study, we established a direct in ovo lipofection method that could be used to create transgenic quail without germline-competent cells or viruses. To optimize the injection stage during embryo development, the liposome complex (containing piggyBacCMV-GFP and transposase plasmids) was introduced into an embryonic blood vessel at 50 hr, 55 hr or 60 hr. GFP expression was detected in various tissues (heart, kidney, liver and stomach) on day 12 of incubation under a fluorescence microscope. Additionally, GFP-positive cells were detected in the recipient embryonic gonads. In conclusion, the direct in ovo lipofection method with the piggyBac transposon could be an efficient and useful tool for generating transgenic quail.

The innate immune response transcription factor Bombyx mori Relish1 induces high-level antimicrobial peptides in silkworm

  • Kim, Seong-Wan;Kim, Seong-Ryul;Goo, Tae-Won;Choi, Kwang-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.37 no.2
    • /
    • pp.49-54
    • /
    • 2018
  • To artificially enhance antimicrobial peptide expression in Bombyx mori, we constructed genetically engineered silkworms overexpressing Rel family transcription factor. The truncated BmRelish1 (BmRelish1t) gene contained a Rel homolog domain (RHD), nuclear localization signal (NLS), acidic and hydrophobic amino acid (AHAA)-rich region, and death domain (DD), but no ankyrin-repeat (ANK) domain. The BmRelish1t gene was controlled by B. mori cytoplasmic actin 3 promoter in the PiggyBac transposon vector. Chromosome analysis of G1 generations of a transgenic silkworm with EGFP expression confirmed stable insertion of BmRelish1t. BmRelish1t gene overexpression in transgenic silkworms resulted in higher mRNA expression levels of B. mori antimicrobial peptides such as lebocin(~20.5-fold), moricin(~8.7-fold), and nuecin(~17.4-fold) than those in normal silkworms.

Gene-editing techniques and their applications in livestock and beyond

  • Tae Sub Park
    • Animal Bioscience
    • /
    • v.36 no.2_spc
    • /
    • pp.333-338
    • /
    • 2023
  • Genetic modification enables modification of target genes or genome structure in livestock and experimental animals. These technologies have not only advanced bioscience but also improved agricultural productivity. To introduce a foreign transgene, the piggyBac transposon element/transposase system could be used for production of transgenic animals and specific target protein-expressing animal cells. In addition, the clustered regularly interspaced short palindromic repeat-CRISPR associated protein 9 (CRISPR-Cas9) system have been utilized to generate chickens with knockout of G0/G1 switch gene 2 (G0S2) and myostatin, which are related to lipid deposition and muscle growth, respectively. These experimental chickens could be the invaluable genetic resources to investigate the regulatory pathways and mechanisms of improvement of economic traits such as fat quantity and growth. The gene-edited animals could also be applicable to the livestock industry.

Construction of Transgenic Silkworms Expressing Human Stem Cell Factor (hSCF) (인간 유래 Stem Cell Factor (hSCF) 재조합단백질이 발현되는 누에형질전환체 제작)

  • Kim, Sung-Wan;Yun, Eun-Young;Kim, Seong-Ryul;Park, Seung-Won;Kang, Seok-Woo;Kwon, O-Yu;Goo, Tae-Won
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1726-1731
    • /
    • 2011
  • Human Stem Cell Factor (hSCF) is a cytokine that binds to the c-Kit receptor and plays an important role in hematopoiesis, spermatogenesis, and melanogenesis. To produce the human Stem Cell Factor (hSCF) recombinant protein, we constructed a germline transgenic silkworm using the piggyback vector. The expression of the hSCF gene was driven by the Drosophila heat shock protein 70 (dHsp70) promoter. 3XP3 promotor-driven EGFP was used as a marker which allowed us to rapidly distinguish the transgenic silkworm. A mixture of the donor and helper vector was micro-injected into 1,020 eggs of bivoltin silkworms, Keomokjam. We obtained approximately 22 G1 broods that were EGFP-positive. The expression of the hSCF gene in the transgenic silkworm was analyzed by SDS-PAGE and immunoblotting. Also, analysis of insertion sites into the silkworm genome using inverse PCR showed that exogenous DNA was inserted into the transgenic silkworm genome. These results show that successfully constructed transgenic silkworm expresses the hSCF recombinant protein.

In Vitro Assay of Mammary Gland Tissue Specific hEPO Gene Expression (hEPO 유전자의 유선조직 특이적 발현에 대한 In Vitro 검정)

  • Koo, Bon Chul;Kwon, Mo Sun;Kim, Teoan
    • Reproductive and Developmental Biology
    • /
    • v.40 no.1
    • /
    • pp.7-13
    • /
    • 2016
  • Effectiveness of transgene transfer into genome is crucially concerned in mass production of the bio-pharmaceuticals using genetically modified transgenic animals as a bioreactor. Recently, the mammary gland has been considered as a potential bioreactor for the mass production of the bio-pharmaceuticals, which appears to be capable of appropriate post-translational modifications of recombinant proteins. The mammary gland tissue specific vector system may be helpful in solving serious physiological disturbance problems which have been a major obstacle in successful production of transgenic animals. In this study, to minimize physiological disturbance caused by constitutive over-expression of the exogenous gene, we constructed new retrovirus vector system designed for mammary gland-specific expression of the hEPO gene. Using piggyBac vector system, we designed to express hEPO gene under the control of mammary gland tissue specific and lactogenic hormonal inducible goat ${\beta}$-casein or mouse Whey Acidic Protein (mWAP) promoter. Inducible expression of the hEPO gene was confirmed using RT-PCR and ELISA in the mouse mammary gland cells treated with lactogenic hormone. We expect the vector system may optimize production efficiency of transgenic animal and reduce the risk of global expression of transgene.

Efficient transgene expression system using a cumate-inducible promoter and Cre-loxP recombination in avian cells

  • Park, Tae Sub;Kim, Si Won;Lee, Jeong Hyo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.6
    • /
    • pp.886-892
    • /
    • 2017
  • Objective: Transgenic technology is widely used for industrial applications and basic research. Systems that allow for genetic modification play a crucial role in biotechnology for a number of purposes, including the functional analysis of specific genes and the production of exogenous proteins. In this study, we examined and verified the cumate-inducible transgene expression system in chicken DF1 and quail QM7 cells, as well as loxP element-mediated transgene recombination using Cre recombinase in DF1 cells. Methods: After stable transfer of the transgene with piggyBac transposon and transposase, transgene expression was induced by an appropriate concentration of cumate. Additionally, we showed that the transgene can be replaced with additional transgenes by co-transfection with the Cre recombinase expression vector. Results: In the cumate-GFP DF1 and QM7 cells, green fluorescent protein (GFP) expression was repressed in the off state in the absence of cumate, and the GFP transgene expression was successfully induced in the presence of cumate. In the cumate-MyoD DF1 cells, MyoD transgene expression was induced by cumate, and the genes controlled by MyoD were upregulated according to the number of days in culture. Additionally, for the translocation experiments, a stable enhanced green fluorescent protein (eGFP)-expressing DF1 cell line transfected with the loxP66-eGFP-loxP71 vector was established, and DsRed-positive and eGFP-negative cells were observed after 14 days of co-transfection with the DsRed transgene and Cre recombinase indicating that the eGFP transgene was excised, and the DsRed transgene was replaced by Cre recombination. Conclusion: Transgene induction or replacement cassette systems in avian cells can be applied in functional genomics studies of specific genes and adapted further for efficient generation of transgenic poultry to modulate target gene expression.