Browse > Article
http://dx.doi.org/10.7852/ijie.2018.37.2.49

The innate immune response transcription factor Bombyx mori Relish1 induces high-level antimicrobial peptides in silkworm  

Kim, Seong-Wan (Department of Agricultural Biology, National Institute of Agricultural Science, RDA)
Kim, Seong-Ryul (Department of Agricultural Biology, National Institute of Agricultural Science, RDA)
Goo, Tae-Won (Department of Biochemistry, School of Medicine, Dongguk University)
Choi, Kwang-Ho (Department of Agricultural Biology, National Institute of Agricultural Science, RDA)
Publication Information
International Journal of Industrial Entomology and Biomaterials / v.37, no.2, 2018 , pp. 49-54 More about this Journal
Abstract
To artificially enhance antimicrobial peptide expression in Bombyx mori, we constructed genetically engineered silkworms overexpressing Rel family transcription factor. The truncated BmRelish1 (BmRelish1t) gene contained a Rel homolog domain (RHD), nuclear localization signal (NLS), acidic and hydrophobic amino acid (AHAA)-rich region, and death domain (DD), but no ankyrin-repeat (ANK) domain. The BmRelish1t gene was controlled by B. mori cytoplasmic actin 3 promoter in the PiggyBac transposon vector. Chromosome analysis of G1 generations of a transgenic silkworm with EGFP expression confirmed stable insertion of BmRelish1t. BmRelish1t gene overexpression in transgenic silkworms resulted in higher mRNA expression levels of B. mori antimicrobial peptides such as lebocin(~20.5-fold), moricin(~8.7-fold), and nuecin(~17.4-fold) than those in normal silkworms.
Keywords
Bombyx mori; Relish; Transgenic silkworm; Antimicrobial peptide; Silkworm;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dushay MS, Asling B, Hultmark D (1996) Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc Natl Acad Sci USA 93(19), 10343-10347.   DOI
2 Furukawa S, Tanaka H, Ishibashi J, Imanishi S, Yamakawa M (2009) Functional characterization of a cactus homolog from the silkworm Bombyx mori. Biosci Biotechnol Biochem 73(12), 2665-2670.   DOI
3 Goo TW, Yun EY, Kim SW, Choi KH, Kang SW, Kwon K, et al. (2008) Bombyx mori protein disulfide isomerase enhances the production of nuecin, an antibacterial protein. BMB Rep 41(5), 400-403.   DOI
4 Hara S, Yamakawa M (1995) Moricin, a novel type of antibacterial peptide isolated from the silkworm, Bombyx mori. J Biolog Chem 270(50), 29923-29927.   DOI
5 Hedengren M, Asling B, Dushay MS, Ando I, Ekengren S, Wihlborg M (1999) Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol Cell 4(5), 827-837.   DOI
6 Hoffmann JA (2003) The immune response of Drosophila. Nature 426(6962), 33-38.   DOI
7 Ip YT, Reach M, Engstrom Y, Kadalayil L, Cai H, Gonzalez-Crespo S, et al. (1993) Dif, a dorsal-related gene that mediates an immune response in Drosophila. Cell 75(4), 753-763.   DOI
8 Kaneko Y, Furukawa S, Tanaka H, Yamakawa M (2007) Expression of antimicrobial peptide genes encoding Enbocin and Gloverin isoforms in the silkworm, Bombyx mori. Biosci Biotechnol Biochem 71(9), 2233-2241.   DOI
9 Kaneko Y, Tanaka H, Ishibashi J, Iwasaki T, Yamakawa M (2008) Gene expression of a novel defensin antimicrobial peptide in the silkworm, Bombyx mori. Biosci Biotechnol Biochem 72(9), 2353-2361.   DOI
10 Kim JK, Lee E, Shin S, Jeong KW, Lee JY, Bae SY, et al. (2011) Structure and function of papiliocin with antimicrobial and antiinflammatory activities isolated from the swallowtail butterfly, Papilioxuthus. J Biologi Chem 286(48), 41296-41311.   DOI
11 Stoven S, Ando I, Kadalayil L, Engstrom Y, Hultmark D (2000) Activation of the Drosophila NF-kappaB factor Relish by rapid endoproteolytic cleavage. EMBO Rep 1(4), 347-352.   DOI
12 Kobayashi I, Kojima K, Uchino K, Sezutsu H, Iizuka T, Tatematsu K, et al. (2011) An efficient binary system for gene expression in the silkworm, Bombyx mori, using GAL4 variants. Arch Insect Biochem and Physiol 76(4), 195-210.   DOI
13 Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25, 697-743.   DOI
14 Steward R (1987) Dorsal, an embryonic polarity gene in Drosophila, is homologous to the vertebrate proto-oncogene, c-rel. Science 238(4827), 692-694.   DOI
15 Sugiyama M, Kuniyoshi H, Kotani E, Taniai K, Kadono-Okuda K, Kato Y, et al. (1995) Characterization of a Bombyx mori cDNA encoding a novel member of the attacin family of insect antibacterial proteins. Insect Biochem Mol Biol 25(3), 385-392.   DOI
16 Tanaka H, Sagisaka A, Nakajima Y, Fujita K, Imanishi S, Yamakawa M (2009) Correlation of differential expression of silkworm antimicrobial Peptide genes with different amounts of rel family proteins and their gene transcriptional activity. Biosci Biotechnol Biochem 73(3), 599-606.   DOI
17 Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, et al. (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18(1), 81-84.   DOI
18 Tanaka H, Ishibashi J, Fujita K, Nakajima Y, Sagisaka A, Tomimoto K, et al. (2008) A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori. Insect Biochem Mol Biol 38(12), 1087-1110.   DOI
19 Tanaka H, Matsuki H, Furukawa S, Sagisaka A, Kotani E, Mori H, et al. (2007) Identification and functional analysis of Relish homologs in the silkworm, Bombyx mori. Biochim Biophys Acta 1769(9-10), 559-568.   DOI
20 Tanaka H, Yamakawa M (2011) Regulation of the innate immune responses in the silkworm, Bombyx mori. Invertebrate Surviv J 8(1), 59-69.
21 Thomas JL, Da Rocha M, Besse A, Mauchamp B, Chavancy G (2002) 3xP3-EGFP marker facilitates screening for transgenic silkworm Bombyx mori L. from the embryonic stage onwards. Insect Biochem Mol Biol 32(3), 247-253.   DOI
22 Wurm FM (2003) Human therapeutic proteins from silkworms. Nat Biotechnol 21(1), 34-35.   DOI