• Title/Summary/Keyword: pig slurry

Search Result 156, Processing Time 0.034 seconds

Acidification of pig slurry effects on ammonia and nitrous oxide emissions, nitrate leaching, and perennial ryegrass regrowth as estimated by 15N-urea flux

  • Park, Sang Hyun;Lee, Bok Rye;Jung, Kwang Hwa;Kim, Tae Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.3
    • /
    • pp.457-466
    • /
    • 2018
  • Objective: The present study aimed to assess the nitrogen (N) use efficiency of acidified pig slurry for regrowth yield and its environmental impacts on perennial ryegrass swards. Methods: The pH of digested pig slurry was adjusted to 5.0 or 7.0 by the addition of sulfuric acid and untreated as a control. The pig slurry urea of each treatment was labeled with $^{15}N$ urea and applied at a rate of 200 kg N/ha immediately after cutting. Soil and herbage samples were collected at 7, 14, and 56 d of regrowth. The flux of pig slurry-N to regrowth yield and soil N mineralization were analyzed, and N losses via $NH_3$, $N_2O$ emission and $NO_3{^-}$ leaching were also estimated. Results: The pH level of the applied slurry did not have a significant effect on herbage yield or N content of herbage at the end of regrowth, whereas the amount of N derived from pig slurry urea (NdfSU) was higher in both herbage and soils in pH-controlled plots. The $NH_4{^+}-N$ content and the amount of N derived from slurry urea into soil $NH_4{^+}$ fraction ($NdfSU-NH_4{^+}$) was significantly higher in in the pH 5 plot, whereas $NO_3{^-}$ and $NdfSU-NO_3{^-}$ were lower than in control plots over the entire regrowth period. Nitrification of $NH_4{^+}-N$ was delayed in soil amended with acidified slurry. Compared to non-pH-controlled pig slurry (i.e. control plots), application of acidified slurry reduced $NH_3$ emissions by 78.1%, $N_2O$ emissions by 78.9% and $NO_3{^-}$ leaching by 17.81% over the course of the experiment. Conclusion: Our results suggest that pig slurry acidification may represent an effective means of minimizing hazardous environmental impacts without depressing regrowth yield.

Effect of Methane Production from Pig Manure Slurry According to The Solids Concentration and The Crushing Solids of Pig Manure Slurry (돼지분뇨 슬러리중의 고형물 농도수준과 분쇄 처리가 메탄 생성에 미치는 효과)

  • Jeong, Kwang-Hwa;Kim, Jung-Kon;Lee, Dong-Jun;Lee, Dong-Hyun;Cho, Won-Mo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.74-85
    • /
    • 2015
  • Recently, the number of anaerobic digestion facility for livestock manure is on the rise in Korea. All of the livestock manure anaerobic digestion facilities in operation use pig manure slurry as a substrate for anaerobic digestion. Generally, pig manure slurry is composed of 97% water and 3% solids. The particulate matter, such as corn in the form of particles that is undigested by pig is contained in the pig manure slurry. Particulate matter is a factor reducing the effectiveness of biogas production in the anaerobic digestion process. In this study, mechanical grinding treatment was applied to analyze the effect of methane production from pig manure slurry by reducing the particle size of the slurry. On the other hand, the effect of the solid concentration levels on methane production and methane content of the biogas was analyzed. The fine particle concentration in the pig manure slurry was increased by the mechanical grinding treatment. And methane production and methane content of the biogas were higher in grinded pig manure slurry than untreated raw slurry.

Effects of Pig Slurry Application on the Characteristics of Runoff Water in Volcanic Ash Soil in Jeju (제주 화산회토양에서 돈분액비 시용이 유거수의 특성에 미치는 영향)

  • Park, Nam-Geon;Hwang, Kyung-Jun;Park, Hyung-Soo;Song, Sang-Teak;Kim, Moon-Cheol
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.3
    • /
    • pp.189-196
    • /
    • 2007
  • This study was conducted to determine the effects of application levels of pig slurry on the characteristics of runoff water in volcanic ash soil in Jeju, Korea. This study was arranged in randomized complete block design. The data represent the means of the three experiments. Experimental plots were consisted of five treatments such as no fertilizer, chemical fertilizer at 200kg N/ha/year and pig slurry levels at 200, 400 and 600kg N/ha/year. The concentrations of BOD and COD in 600kg N/ha pig slurry were significantly higher (p<0.05) than those of the other treatments at initial sampling at 12 days after application. The total nitrogen concentration in runoff water increased with increasing pig slurry. The total phosphorous concentration in runoff water was hardly influenced by application levels of pig slurry since there were no significant difference among the treatments. The concentrations of $NO_3-N\;and\;NH_4-N$ were raised (p<0.05) in proportion to application levels of pig slurry. In conclusion, pig slurry usage at 200kg N/ha to the volcanic ash soil in Jeju area can replace the chemical fertilizer. However, more than 200kg N/ha of pig slurry may not be appropriate, because it may contaminate the water environment.

Kinetics of Chemical Properties and Microbial Quantity in Soil Amended with Raw and Processed Pig Slurry

  • Suresh, A.;Choi, Hong L.;Zhukun, Zhukun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.5
    • /
    • pp.732-739
    • /
    • 2009
  • Pig slurry is a good soil amendment not only because of its high organic matter content, but also because of its ability to provide various nutrients. The objective of this study was to estimate the influence of raw and processed pig slurry application on pot soil over chemical fertilizer and non-amended control soil. Change in the chemical parameters (pH, organic matter (OM), organic carbon (OC), macro and micronutrients) and microbial mass of the treated soils were monitored over 30 to 90 days. Pot soil was treated with the recommended dose of pig slurry and chemical fertilizer, and was sampled after 30, 60 and 90 days of incubation. The least significanct difference (p<0.05) was observed on Fe, Cu, Zn, available P and K between treatments. All treatments increased N, P and K content and microbial mass of soil over control soil. Interestingly, no significant effects were detected on OM, OC, total bacteria, actinomycetes and fungi mass in soil irrespective of treatments given. However fungal and bacterial counts, as well as available nutrients, were found to be higher in processed slurry (PS)-treated soil compared to other soils. In general a significant correlation existed between the fungal count and OM, OC, Zn, T Kjeldahl N (TKN), available P and K of soil. A strong negative correlation was observed between pH and Fe in soil. This study clearly demonstrated that the use of processed manure as a fertilizer could be a key for sustainable livestock agriculture.

Effects of Compost Leachate and Concentrated Slurry on the Growth and Yield of Tomato(Lycopersicum esculentum Mill.) in Hydroponic Culture (퇴비단 여과액비와 농축액비를 이용한 양액재배가 토마토(Lycopersicum esculentum Mill.)의 생육 및 수량에 미치는 영향)

  • Ryoo, Jong-Won;Seo, Woon-Kab
    • Korean Journal of Organic Agriculture
    • /
    • v.17 no.3
    • /
    • pp.357-370
    • /
    • 2009
  • This experiment was conducted to investigate the effects of compost leachate and concentrated slurry on growth of tomato in hydroponic culture. In process of composting, compost leachate was produced water was through a saturated compost heap. The concentrated slurry was produced by filtration and concentration by membrane process. Filtration of pig slurry was necessary to prevent the hose clogging in hydroponics culture. The treatments of this experiment were consisted of seven different liquid fertilizers; compost leachate(CL), concentrated pig slurry (CS), compost leachate+byproduct(CL+BP), concentrated pig slurry+byproduct(CS+BP), compost leachate 50%+nutrient solution50%(CL+NS), concentrated pig slurry 50%+nutrient solution50%(CS+NS) and nutrient solution(NS) for tomato based on nitrogen content. The chemical nutrient solution was the solution of National Horticulture Research Station for the growth of tomato. The concentration of nutrient solution was adjusted a range of $1.6{\sim}2.0 mS/cm$ in EC. 1. The compost leachate and concentrated pig slurry were low in phosphorus(P), calcium(Ca), magnesium(Mg), but rich in potassium(K). 2. Plant height, SPAD value of tomato was highest in the plot of CS+NS, intermediate in CL, CS+BP, and lowest in 100% concentrated pig slurry. 3. The tomato yield of compost leachate plot was 91% compared with inorganic nutrient solution. The compost leachate solution could be used as a nutrition solution of tomato in organic hydroponics. 4. The growth including plant height, SPAD value, fruit number, fruit weight and yield of tomato in the CL 50%+NS 50% was similar in the control. In conclusion, the mixture solution of 50% pig slurry and 50% nutrient solution could be used as a nutrition solution of tomato hydroponic culture.

  • PDF

Hydroponic Culture of Leaf Lettuce Using Mixtures of Fish Meal, Bone Meal, Crab Shell and the Pig Slurry Leachate of Woodchip Trickling Filter (목편살수여상 침출액비와 어분, 골분, 게껍질 혼합액을 이용한 상추의 수경재배)

  • Ryoo, Jong-Won
    • Journal of Animal Environmental Science
    • /
    • v.16 no.3
    • /
    • pp.215-226
    • /
    • 2010
  • The pig slurry leachate was dark brown-colored solution that leaches out of woodchip trickling filter. The purpose of this research was to investigate the effect of pig slurry leachate and byproduct on growth characteristics of leaf lettuce in hydroponics culture. The effects of addition of fish meal, bone meal and crab shell for the growth of leaf lettuce were investigated. Leaf lettuce were grown in each of six combination treatment solutions; slurry leachate, slurry leachate + fish meal, slurry leachate+bone meal, slurry leachate + crab shell and chemical hydroponic solution for lettuce based on EC content. The chemical nutrient solution was the solution of National Horticulture Research Station for the growth of lettuce. The all of nutrient solution was adjusted 1.5 mS/cm in EC in hydroponics culture. 1. The pH level of leachate of trickling filter was increased and EC decreased gradually during treatment. Pig slurry leachate was low in suspended solids (SS), phosphorus (P), but rich in potassium (K). 2. The plot of slurry leachate (SL) was lowest in the growth characteristics of lettuce. The leaf length and width of lettuce treated with mixture plot of slurry leachate and fish meal (SL + FM) was higher compared with plot in slurry leachate. The chlorophyll reading was reduced in plot treated with slurry leachate, but that in plot of SL+FM was similar compared with control plot. 3. The fresh weight of lettuce showed lowest in the plot treated with slurry leachate. The addition of fish meal increased the yield of comparing plot of slurry leachate, but plots of bone meal and crab shell addition were not significantly difference. The fresh weight of leaf lettuce in plot of SL+FM was 87% as 400.0g compared with control. In conclusion, the mixture solution of pig slurry leachate and fish meal could be used as a nutrition solution of organic lettuce hydroponics.

Optimum Recovery of Biogas from Pig Slurry with Different Compositions (돈분 슬러리 성상에 따른 최적 바이오가스 회수)

  • Park, Woo-Kyun;Jun, Hang-Bae;Kwon, Soon-Ik;Chae, Kyu-Jung;Park, Noh-Back
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.2
    • /
    • pp.197-205
    • /
    • 2010
  • This study was conducted to investigate the optimum conditions for efficient methane production through anaerobic digestion of pig waste slurry. The examined parameters were organic matter content of the pig slurry, the ratio of seed sludge to pig slurry, and stirring intensity of the digestion reactor. The effects of types of slurry produced from different purpose-based pigs fed with different feeds were also tested. The methane concentration in the produced biogas was 45% when the ratio of seed sludge to pig slurry was 50% and total solid (TS) concentration was 1%, and it increased in proportional to TS concentration increases from 3 to 7%. At 3 and 5% of TS concentration, increasing mixing velocity from 80 to 160 rpm resulted in higher biogas production amount. However, mixing amount of seed sludge did not cause any significant effect on biogas production. Overall, the most efficient biogas production was achieved at 3-5% TS concentration in combination with 50% seed sludge inoculation and mixing velocity at 120 rpm. Among pig slurry types, gestating sow waste slurry showed the highest biogas production probably due to higher the degradation rate than other types of pig waste slurry being affected by the feeds components.

Effects of Concentrated Pig Slurry Using Membrane Filter on the Growth and Yield of Tomato in Nutriculture (막분리 돈분뇨 농축액비를 이용한 양액재배가 토마토의 생육과 수량에 미치는 영향)

  • Ryoo, Jong-Won;Seo, Woon-Kab
    • Journal of Animal Environmental Science
    • /
    • v.14 no.2
    • /
    • pp.119-128
    • /
    • 2008
  • This experiment was conducted to investigate the effects of concentrated pig slurry using membrane filter on growth of tomato in nutriculture. Pig slurry was filtered by ultra filtration and concentrated by reverse osmosis process. Filtration of pig slurry was necessary to prevent the hose clogging in nutriculture. The concentrated pig slurry (CS) and nutrient solution (NS) were mixed by six different mixing ratios of 0:100, 20:80, 40:60, 60:40%, 80: 20 and 100%:0% based on nitrogen content. The chemical nutrient solution was the solution of National Horticulture Research Station for the growth of tomato. The concentration of nutrient solution was adjusted a range of $1.6{\sim}2.0mS/cm$ in EC. The plant height of tomato treated with CS 20+NS 80% was similar with NS 100% control plot. Plant height was highest in the plot of CS 20+NS 80%. The treatment of 100% concentrated pig slurry was lowest in the gowth characteristics of tomato. Number of cluster was very lower in 100% concentrated pig slurry compared with plot of chemical nutrient solution. In the beginning of growth stage, SPAD reading value was reduced in plot treated with CS 100%, but CS 20+NS 80% plot was higher compared to 100% concentrated pig slurry. SPAD value of tomato leaves was decreased as the amount of CS was increased. The SPAD value also in treatment of concentrated pig slurry was lower in the middle growth stage compared to control plot. The dry weight of stem and leaf were 107.4, 104.2g in plot of NS 100% and CS 20%+NS 80%, respectively. The fruit number and weight were decreased at high application plots of concentrated pig slurry, The fruit setting of tomato showed lowest in the plot treated with 100% concentrated pig slurry, and the growth of tomato severely decreased after application of 100% CS treatment. In conclusion, the growth characteristics such as plant height and fruit weight of tomato were not significantly different between the plots treated with mixture of 20% CS +80%NS and 100% nutrient solution treatment. In conclusion, the mixture solution of 20% of concentrated pig slurry and 80% of nutrient solution could be used as a nutrition solution of tomato nuticulture.

  • PDF

Characteristics and Quantity of Slurry Produced by Swine Slurry Farms (슬러리 돈사에서의 슬러리 발생량 및 이화학적 특성)

  • Kwag, J.H.;Choi, H.C.;Choi, D.Y.;Kang, H.S.;Park, C.H.;Han, J.D.;Jeon, B.S.;Kim, H.H.
    • Journal of Animal Environmental Science
    • /
    • v.8 no.2
    • /
    • pp.111-114
    • /
    • 2002
  • This study was conducted to determine the volume of pig slurry productinn and the characteristics from 4 swine farms. For the composition of pig slurry produced, contents of N, $P_2O_5$ and $K_2O$, were 0.13, 0.25 and 0.13% in slurry, respectively. Water pollutant concentration in slurry of swine farms, $BOD_5$, $COD_MN$, SS, T-N and T-P, was $24,047mg/{\ell}$, $30,232mg/{\ell}$, $36,833mg/{\ell}$, $2,805mg/{\ell}$, $465mg/{\ell}$, respectively. The average volume of pig slurry was 6.30 ${\ell}/head/day$ and 6.32 ${\ell}$ in spring, 6.69 ${\ell}$ in summer, 6.09 ${\ell}$ in autumn, and 6.12 ${\ell}$ in winter. The average moisture content of slurry was 95.8%. The composition of slurry produced by pig farms.

  • PDF

Effect of Aeration on Fertilization and Sludge Accumulation of Pig Slurry (돼지분뇨 슬러리 액비화시 폭기가 액비특성 및 슬러지 형성에 미치는 영향)

  • Jeong, Kwang-Hwa;Khan, Modabber Ahmed;Lee, Myung-Gyu;Kim, Jung-Gon;Han, Duk-Woo;Kwag, Jung-Hun
    • Journal of Animal Environmental Science
    • /
    • v.19 no.1
    • /
    • pp.47-54
    • /
    • 2013
  • Two types of reactors were set to investigate the change of characteristics of pig slurry by aeration during fertilization period. One system was equipped with air diffuser to supply oxygen to pig slurry for liquid fertilization, but there was no air diffuser in the other system. Air supply to the experimental systems was regulated by air flow meter. The reactors were set up in the laboratory to protect the pig slurry from external condition such as temperature and humidity changes. Maintaining optimal pH range in the experimental reactors is an important factor for liquid fertilization of pig slurry. In this study, pH ranges of aerobic reactor and anoxic reactor was 7.04~7.19 and 7.34~7.81, respectively. The temperature of aerobic reactors was $2{\sim}3^{\circ}C$ higher then indoor temperature. The amount of sludge accumulated at the bottom layer of non-aerated reactors was 4~5 times more than that of aerated reactors.