• 제목/요약/키워드: pig house

검색결과 119건 처리시간 0.027초

Evaluation of the microbiome composition in particulate matter inside and outside of pig houses

  • Hong, Se-Woon;Park, Jinseon;Jeong, Hanna;Kim, Minseok
    • Journal of Animal Science and Technology
    • /
    • 제63권3호
    • /
    • pp.640-650
    • /
    • 2021
  • Particulate matter (PM) produced in pig houses may contain microbes which can spread by airborne transmission, and PM and microbes in PM adversely affect human and animal health. To investigate the microbiome in PM from pig houses, nine PM samples were collected in summer 2020 inside and outside of pig houses located in Jangseong-gun, Jeollanam-do Province, Korea, comprising three PM samples from within a nursery pig house (I-NPH), three samples from within a finishing pig house (I-FPH), and three samples from outside of the pig houses (O-PH). Microbiomes were analyzed using 16S rRNA gene amplicon sequencing. Firmicutes was the most dominant phylum and accounted for 64.8%-97.5% of total sequences in all the samples, followed by Proteobacteria (1.4%-21.8%) and Bacteroidetes (0.3%-13.7%). In total, 31 genera were represented by > 0.3% of all sequences, and only Lactobacillus, Turicibacter, and Aerococcus differed significantly among the three PM sample types. All three genera were more abundant in the I-FPH samples than in the O-PH samples. Alpha diversity indices did not differ significantly among the three PM types, and a principal coordinate analysis suggested that overall microbial communities were similar across PM types. The concentration of PM did not significantly differ among the three PM types, and no significant correlation of PM concentration with the abundance of any potential pathogen was observed. The present study demonstrates that microbial composition in PM inside and outside of pig houses is similar, indicating that most microbe-containing PM inside pig houses leaks to the outside from where it, along with microbe-containing PM on the outside, may re-enter the pig houses. Our results may provide useful insights regarding strategies to mitigate potential risk associated with pig farming PM and pathogens in PM.

자연환기식 육성${\cdot}$비육돈사와 동절기 암모니아 발생특성 (Ammonia Emission Characteristics of the Naturally Ventilated Growing-finishing Pig Building in Winter)

  • 이성현;조한근;김경원;이인복;최광재;오권영;유병기
    • 한국축산시설환경학회지
    • /
    • 제11권2호
    • /
    • pp.103-110
    • /
    • 2005
  • 이 연구의 목적은 겨울철 양돈농가의 육성${\cdot}$비육돈사를 대상으로 돈사내부의 암모니아 가스와 이산화탄소 가스 농도를 측정하여 양돈시설에서 얼마만큼의 암모니아 가스가 발생하는 가를 분석하기 위한 것으로 그 결과를 요약하면 다음과 같다. 1. 육성${\cdot}$비육돈사의 내부의 온도는 최소 $6.4^{\circ}C$, 최대 $18.9^{\circ}C$, 일중 평균 $12.4{\pm}4^{\circ}C$로 나타났다. 돈사내부의 온도는 외기의 온도가 $-7.9\~5^{\circ}C$인 것을 고려하면 돼지의 체열에 의한 온도상승으로 가온을 하지 않았음에도 불구하고 외기온도 보다 약 $10^{\circ}C$ 높게 유지되었으며, 외기온의 변화와 같은 경향으로 변화하는 것으로 나타났다. 2. 겨울철 육성${\cdot}$비육돈사의 환기율을 분석한 결과 돼지 한 마리당 일평균 $16\;m^3/h$로 나타났으며, 최소 $12\;m^3/h$, 최대 $22.4\;m^3/h$로 최대환기율과 최소환기율에 2배 정도 차이가 있는 것으로 나타났다. 3. 겨울철 이산화탄소 농도는 일중 평균 $1,775{\pm}230\;ppm$으로 나타났으며, 환기율과 암모니아 농도를 고려하여 분석한 암모니아 발생량은 일중 평균 $208{\pm}28\;mg/h{\cdot}pig$ 내외로 나타났다. 겨울철에는 다른 계절과 달리 돈사내부의 온도관리를 위해 돈사의 윈치커튼을 닫아 내부의 암모니아 농도는 높으나, 환기율이 상대적으로 낮아 암모니아가스 발생량은 다른 계절과 비교하여 상대적으로 적은 것으로 분석되었다.

  • PDF

Correlation of Air Pollutants and Thermal Environment Factors in a Confined Pig House in Winter

  • Choi, Hong L.;Kim, Ki Y.;Kim, Hyunook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권4호
    • /
    • pp.574-579
    • /
    • 2005
  • Optimal management of indoor air quality in a confined pig house, especially in winter, is indispensable for preventing infectious respiratory disease to workers and animals. This study was performed to elucidate the correlation of aerial contaminants and climate factors in a confinement. It was observed that indoor air contaminants ion in the confinement was the highest at 2:00-5:00 pm in a day, followed by 8:00-11:00 pm and 8:00-11:00 am. This was attributed to the increase of pig activities in the afternoon. The concentration of total dust and total airborne bacteria was found to have a significant correlation with temperature and relative humidity (p<0.05). Correlation of total dust and total airborne bacteria, total dust and ammonia, and total dust and odor were shown statistically significant at 95% confidence level. In conclusion, temperature and total dust concentration correlated significantly with all the parameters except for hydrogen sulfide ($H_2S$). This could be explained by the fact the dryness of pig feces by increase of interior temperature and resuspension of feed deposited on the floor by the pig activity, resulted in high generation of dust which adsorbed and carried the airborne bacteria and odor compounds in a confined pig house. It was proved that the adsorptive capacity of dust with ammonia ($NH_3$) was higher than that with hydrogen sulfide ($H_2S$).

무창 분만 ${\cdot}$ 자돈사 환기 형태가 돈사내 환경에 미치는 영향 (Effects of Ventilation Types on Interior Environment of the Enclosed Farrowing-Nursery Pig House)

  • 유용희;송준익;강희설;전병수;김태일;김형호
    • 한국축산시설환경학회지
    • /
    • 제8권2호
    • /
    • pp.79-86
    • /
    • 2002
  • This study was conducted to collect basic data about the effects of ventilation types on the interior environment of the enclosed farrowing-nursery pig house in Anseong, Icheon and Jeungpyong. Surveyed ventilation types in the enclosed farrowing-nursery pig house are classified in to 4 types. In V1 type, air enters through a planar slot inlet placed on the juncture of the entering wall and exit through the chimney fan outlet; in V2 type, air enters through a perforated ceiling inlet and exits chimney fan outlet(V2); in V3 type, air enters through a circular duct inlet and exit chimney fan outlet(V3); in V4 type, enters through a circular duct inlet and exits side wall exhaust fan outlet(V4). Temperature, relative humidity, air velocity and ammonia concentration($NH_3$) were measured in the interior of swine building in the summer. Interior temperature was not remarkably different in all ventilation types in this study. However, temperature of the V4 was somewhat lower than that of the other types. Air velocity of the V4 was higher and $NH_3$ concentration of the V4 was lower than those of other ventilation types. It is suggested that the V4 ventilation type be applicable in the enclosed farrowing-nursery pig house in Korea.

  • PDF

우리나라 중부지방 돈사의 구조 및 환경실태조사 (Field Survey of Structural and Environmental Characteristics of Pig Houses in the Central Provinces in Korea)

  • 최홍림;송준익;김현태
    • 한국축산시설환경학회지
    • /
    • 제5권1호
    • /
    • pp.1-15
    • /
    • 1999
  • The structural and environmental characteristics of typical pig houses in different growth phases were surveyed and analyzed. Based on the data for thirty six selected farms in four provinces, Gyonggi-do, Gangwon-do, Choongnam, and Chonbook, in Central Korea, the goal is to eventually establish standard pig houses of sow and litter, nursery pigs, and growing-finishing pigs. The survey included farm scale, production specialization, structural dimensions of the houses and their ventilation systems, cooling and heating systems, and floor and pit systems related to manure collection. The survey showed 90∼99% of growing-finishing curtain installation rate was lower by 10∼20%. The sidewall curtain system, although popular, is not well insulated which leads to excessive heating costs in winter. Regarding flooring and manure collection system of the house, there was quite a lot variability among provinces, with 30∼80% of the houses installing scraper systems with concrete-slat floors in comparison with 30∼60% using a slurry system. Gangwon-do and Choongbook Chungwoo-goon are the predominant regions that installed a scraper system. A general trend toward enlargement and enclosure of pig houses for all growth phases was gaining popularity in most regions in recent years. A steady shift to three site production from a lumped system was also observed to prevent a disease transfer. The structural design of a standard pig house with its environmental control systems including ventilation and heating/cooling system was suggested for further validation study. In-depth analysis of the survey data is presented in the Results and Discussing section.

무창 육성.비육돈사의 공기유동 특성 분석 (Analysis of Airflow Characteristics in an Enclosed Growing-Finishing Pig House)

  • 송준익;최홍림;최희철;이덕수;전병수;전중환;유용희
    • 한국축산시설환경학회지
    • /
    • 제14권1호
    • /
    • pp.39-46
    • /
    • 2008
  • 본 실험은 무창육성 비육돈사에 있어서 여름과 겨울철 환기를 할 때 공기 유입구에서의 공기속도가 환경에 미치는 영향을 조사하고자 CFD를 이용한 모델을 설정하였고, 현장실험을 통한 결과와 CFD 모델의 공기유속 결과를 서로 비교하였다. 공기속도에 있어서 수학적인 모델은 현장실험 결과와 매우 유사하게 나타났다. 환기시스템에서의 공기흐름은 양쪽 측벽 슬롯 판넬을 통하여 공급하였으며 겨울철은 $2{\sim}2.5m/s$ 였고, 여름철은 0.8 m/s 전후였다. 이상의 연구 결과 여름철과 겨울철 모두 해석 Model과 실험 무창육성 비육돈사내 측정 결과 평균 유속은 근소한 차이로 나타나 공기유동 해석 연구에 있어서 CFD 시뮬레이션의 적용으로 합리적인 결과를 도출할 수 있음을 확인하였다.

  • PDF

양돈농가의 사육규모별 축사시설 분석 (Surveying for Pig House Facilities of Pig Farms by Holding Scale)

  • 서광욱;민병로;최희철;이대원
    • 한국축산시설환경학회지
    • /
    • 제15권3호
    • /
    • pp.231-240
    • /
    • 2009
  • 본 연구는 우리나라 양돈농가의 사육규모별 양돈시설 현황을 파악하고자 전국 9개도의 돼지 1,000두 이상 사육농가 3,029호를 대상으로 돈사시설 실태를 조사하였으며 결과는 다음과 같다. 1,000두 이상을 사육하는 전업농가에서 7,229,892 마리를 사육하였으며 농가당 평균 사육두수는 2,386.9두 이었다. 돈사의 건축 시기는 평균 건축연도가 1995. 8월로 노후한 돈사가 많았으며 농가당 돈사면적은 $3,017.2\;m^2$이었다. 돈사의 건축형태는 윈치커튼돈사가 77.2%로 무창돈사 51.3%, 톱밥돈사 7.4, 고상식 4.6% 보다 많았으며 1,000~1,999두 사육 농가는 윈치커튼돈사가 80.6%로 무창돈사 43.6% 보다 많았으나 10,000두 이상의 대규모 농가는 무창돈사가 75.5%로 윈치커튼 돈사 56.6% 보다 많았다. 분뇨수거 형태는 슬러리 돈사가 72.3%로 스크레이퍼 돈사 38.5% 보다 많았으며 1,000~1,999두 사육농가의 슬러리돈사 72.3%에 비하여 10,000두 이상 사육농가는 슬러리가 83.3%로 대규모 농가에서 더 많았다. 지붕재질은 슬레이트 51.2%, 판넬 46.1%로 슬레이트가 많았으나 10,000 이상 사육농가는 슬레이트가 25.0%로 중소규모 농가에 비하여 낮은 비율을 보였다. 돈사의 외벽체는 판넬이 41.9%로 가장 많았으며 블록 21.9%, 콘크리트 7.6%, 윈치커튼 6.3%, 벽돌 5.9% 이었다. 돈사의 환기방식은 자연환기 46.1%, 기계식 무창 44.1%, 자연환기+기계식 혼합형 53.1%로 자연환기보다는 기계식환기를 하는 농가가 많았다. 특히 규모가 클수록 기계식 무창의 비율은 69.8%로 소규모농가의 36.1%에 비하여 많았다. 돈사 시설의 사용년수는 급이라인 8.1년, 급수라인 8.3년, 전기시설 8.2년, 바닥재 9.0년으로 대부분 8년 이상 사용한 것으로 나타났다.

  • PDF

돈사 내부 열환경 분포의 공기연령 이론법 적용을 통한 전산유체역학 환기 예측 모델 개발 (Development of CFD model for Predicting Ventilation Rate based on Age of Air Theory using Thermal Distribution Data in Pig House)

  • 김락우;이인복;하태환;여욱현;이상연;이민형;박관용;김준규
    • 한국농공학회논문집
    • /
    • 제59권6호
    • /
    • pp.61-71
    • /
    • 2017
  • The tracer gas method has an advantage that can estimate total and local ventilation rate by tracing air flow. However, the field measurement using tracer gas has disadvantages such as danger, inefficiency, and high cost. Therefore, the aim of this study was to evaluate ventilation rate in pig house by using the thermal distribution data rather than tracer gas. Especially, LMA (Local Mean Age), which is an index based on the age of air theory, was used to evaluate the ventilation rate in pig house. Firstly, the field experiment was conducted to measure micro-climate inside pig house, such as the air temperature, $CO_2$ concentration and wind velocity. And then, LMA was calculated based on the decay of $CO_2$ concentration and air temperature, respectively. This study compared between LMA determined by $CO_2$ concentration and air temperature; the average error and root mean square error were 3.76 s and 5.34 s. From these results, it was determined that thermal distribution data could be used for estimation of LMA. Finally, CFD (Computational fluid dynamic) model was validated using LMA and wind velocity. The mesh size was designed to be 0.1 m based on the grid independence test, and the Standard $k-{\omega}$ model was eventually chosen as the proper turbulence model. The developed CFD model was highly appropriate for evaluating the ventilation rate in pig house.

국내 돈사 악취 방출량 측정 결과 분석 (Analysis of Field Measured Odor Emission Rate in Pig Houses)

  • 크리스티나;이인복;여욱현;정득영;이상연;박세준;조정화;이민형;정효혁;김다인;강솔뫼
    • 한국농공학회논문집
    • /
    • 제64권6호
    • /
    • pp.55-63
    • /
    • 2022
  • Odors emitted from pig houses have been a constant root of legal issues in pig farming. These gases are among the main causes of health and mental stresses to nearby communities, so policymakers and researchers continuously study to reduce the concentration of odorous gases from pig facilities. A continuous field experiment proved that the concentration of odor emissions inside the pig houses is highly dependent on ventilation rate, breeding details, and animal activities. However, the standard odor emission rate worldwide widely varies due to differences in pig house designs and ventilation requirements. Thus, this study aimed to measure the odor emission rates, considering the actual condition of selected Korean pig houses, through field measurement. The odor measurements were performed at three different pig production facilities without odor abatement technologies. The target experimental pig houses were buildings for weaning, growing, and fattening pigs. Results showed that the actual ventilation rate in target pig houses falls below the standard ventilation requirement of pigs, resulting in high odor concentrations inside the pig houses.

비육돈사 작업 종사자의 호흡기 관련 공기 중 분진 농도 측정 및 분석 (Measurement and Analysis of Dust Concentration in a Fattening Pig House Considering Respiratory Welfare of Pig Farmers)

  • 권경석;이인복;황현섭;하태환;하정수;박세준;조예슬
    • 한국농공학회논문집
    • /
    • 제55권5호
    • /
    • pp.25-35
    • /
    • 2013
  • In swine house, dust generation comes from various sources and is known to be harmful both for the animals and the farmers because the dust contains biological and gaseous matters. When farmers are constantly exposed to the dusts, they can suffer chronic or acute respiratory symptoms and have high probability of manifesting various diseases. To address this problem, understanding of the mechanism of dust generation is very important. In this paper, the dust concentration of inhalable, respirable, TSP and $PM_{10}$ were monitored and analyzed according to the pig-activity level, ventilation quantity and feeding method in fattening pig house. From the measured results, in case of the concentration of TSP, an inverse-linear relation with ventilation rate ($R^2=0.88$) and linear relation with the installation height of feed supply pipe ($R^2=0.73$) were determined. However in case of the concentration of $PM_{10}$, no particular relationship with the variables was observed. Using the concentration of inhalable and respirable dust based on the pig-activity level, multi-variate regression analysis was conducted and results have shown that the movement of pigs can contribute to the dust generation (p<0.05, $R^2=0.71$, 0.61). The relationship determined between dust generation and environmental variables investigated in this study is very significant and useful in conducting dust-reduction researches.