• Title/Summary/Keyword: pig farm

Search Result 272, Processing Time 0.038 seconds

A field approach to eradication of porcine epidemic diarrhoea virus in a breeding pig farm: A case-control study

  • Kim, Eunju;Yi, Seung-Won;Oh, Sang-Ik;So, Kyoung-Min;Jung, Younghun;Lee, Han Gyu;Hong, Joon Ki;Cho, Eun Seok;Kim, Young-Sin;Hur, Tai-Young
    • Korean Journal of Veterinary Service
    • /
    • v.44 no.4
    • /
    • pp.291-297
    • /
    • 2021
  • Severe outbreaks of porcine epidemic diarrhoea virus (PEDV) have continued to re-emerge worldwide. Because of the high mortality rate of suckling piglets in PEDV outbreaks, the disease causes significant economic losses in the pig industry. The limited pre-existing immunity against this virus is thought to cause an explosive increase in infection in pig farms. This study aimed to evaluate the clinical symptoms of PEDV after intentional exposure (feedback). During the first few days of the outbreak in a breeding pig farm, 14 sows showed watery diarrhoea, and the disease subsequently spread rapidly throughout the barn. Pigs that were intentionally exposed to PEDV (n=251) showed watery diarrhoea (46.6%), reduced appetite (17.5%), and vomiting (6.0%). However, 75 exposed pigs (29.9%) showed no clinical signs of disease. Four weeks after the feedback challenge, 34 sows gave birth to litters of piglets, which survived with no diarrhoea. Five weeks after the start of the outbreak, PEDV was not detected in any of the examined samples, including environmental swabs. Thus, early diagnosis, prompt establishment of herd immunity, and strict application of biosecurity are good practices to reduce the mortality rates among new-born piglets and control economic losses in pig farms showing PEDV outbreaks.

A Swine Management System for PLC baed on Integrated Image Processing Technique (통합 이미지 처리기법 기반의 PLF를 위한 Swine 관리 시스템)

  • Arellano, Guy;Cabacas, Regin;Balontong, Amem;Ra, In-Ho
    • Smart Media Journal
    • /
    • v.3 no.1
    • /
    • pp.16-21
    • /
    • 2014
  • The demand for food rises proportionally as population grows. To be able to achieve sustainable supply of livestock products, efficient farm management is a necessity. With the advancement in technology it also brought innovations that could be harness in order to achieve better productivity in animal production and agriculture. Precision Livestock Farming (PLF) is a budding concept of making use of smart sensors or available devices to automatically and continuously monitor and manage livestock production. With this concept, this paper introduces a swine management system that integrates image processing technique for weight monitoring. This system captures pig images using camera, evaluate and estimate the weight base on the captured image. It is comprised of Pig Module, Breeding Module, Health and Medication Module, Weighr Module, Data Analysis Module and Report Module to help swine farm administrators better understand the performance and situation of the swine farm. This paper aims to improve the management in both small and big livestock raisers.

Infection patterns of porcine reproductive and respiratory syndrome virus by serological analysis on a farm level (혈청학적 분석을 통한 돼지 생식기호흡기증후군의 농장단위 감염유형)

  • Park, Choi-Kyu;Yoon, Ha-Chung;Lee, Chang-Hee;Jung, Byeong-Yeal;Lee, Kyoung-Ki;Kim, Hyun-Soo
    • Korean Journal of Veterinary Research
    • /
    • v.48 no.1
    • /
    • pp.67-73
    • /
    • 2008
  • Porcine reproductive and respiratory syndrome (PRRS) is the most economically important viral infectious disease in pig populations worldwide. This study was conducted to better understand the epidemic and dynamics of PRRS virus (PRRSV) on each farm and to evaluate the risk of PRRSV infection in Korea. Interviews with pig farmers were carried out to obtain PRRS vaccination programmes in 60 pig farms throughout Korea. Blood samples were also collected from the 59 pig farms to investigate outbreak patterns of each farm. Vaccination against PRRS was performed in 16.7% farms for breeding pigs and 8.3% of farms for nursery pigs. According to the seroepidemiological analysis, 56 (94.9%) out of 59 farms were considered to be affected by PRRSV infection. The results revealed that 68.9% of sows tested were seroconverted and interestingly, gilt herds had the highest seropositive rate (73%), suggesting that gilts may play a key role in PRRSV transmission in sow herds. Among the PRRS-affected piglet herds, 33 (55.9%), 14 (23.7%) and 6 (10.2%) farms were initially infected with PRRSV during the weaning, suckling and nursery period, respectively. It seems likely, therefore, that PRRSV infection predominantly occurs around the weaning period in piglet herds. Based on antibody seroprevalence levels in both sow and piglet groups, we were able to classify patterns of PRRSV infection per farm unit into 4 categories; category 1 (stable sow groups and non-infected piglet groups), category 2 (unstable sow groups and non-infected piglet groups), category 3 (stable sow groups and infected piglet groups), and category 4 (unstable sow groups and infected piglet groups). Our data suggested that 43 (72.9%) farms were analysed to belong to category 4, which is considered to be at high-risk for PRRS outbreak. Taken together, our information from this study will provide insight into the establishment of an effective control strategy for PRRS on the field.

Real-time Monitoring of Ammonia and Hydrogen Sulfide According to Workplace at Swine Farms (양돈장 작업장소별 암모니아 및 황화수소의 실시간 모니터링)

  • Park, Jihoon;Kang, Taesun;Seok, Jiwon;Jin, Suhyun;Heo, Yong;Kim, Kyungran;Lee, Kyungsuk;Yoon, Chungsik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.4
    • /
    • pp.402-411
    • /
    • 2013
  • Objectives: This study aims to assess the concentrations of ammonia and hydrogen sulfide according to task unit area at swine farms. Methods: A total of six swine farms were selected for this study. Ammonia and hydrogen sulfide were monitored using a real-time multi-gas monitor which could sample the gases simultaneously. The sampling was done in the pig building, manure storage facility and composting facility of each farm. Results: The concentration of ammonia in the pig buildings(GM 22.6 ppm, GSD 2.3) was significantly higher(p<0.0001) than in the manure storage facilities(GM 10.4 ppm, GSD 2.7) and composting facilities(GM 8.6 ppm, GSD 2.8). The concentration of hydrogen sulfide in the manure storage facilities(GM 9.8 ppm, GSD 3.2) was higher(p<0.0001) than in the pig buildings(GM 2.3 ppm, GSD 2.3) and composting facilities(GM 1.9 ppm, GSD 2.5). In particular, the levels of hydrogen sulfide in the confined manure storage facilities were higher than those in open-type facilities and the peak concentration(98 ppm) in the confined facilities was approximate to 100 ppm, at the value of Immediately Dangerous to Life or Health(IDLH). Conclusions: Suffocation accidents caused by hazardous gases at a swine farm have occurred annually. Real-time monitoring of the hazards should be done in order to protect farm workers and livestock from the sudden accidents.

Comparison of Serological and Virological Analysis for Infection Patterns of Porcine Reproductive and Respiratory Syndrome Virus to Establish a Farm Level Control Strategy (돼지 생식기호흡기증후군바이러스의 농장단위 방역대책 수립을 위한 혈청학적 및 바이러스학적 감염유형 분석법 적용 및 비교)

  • Kim, Seong-Hee;Lee, Chang-Hee;Park, Choi-Kyu
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1170-1176
    • /
    • 2009
  • Porcine reproductive and respiratory syndrome virus (PRRSV) has plagued pig populations worldwide causing severe economical impacts. In order to establish effective strategies for prevention of PRRS, infection patterns on the herd level are primarily evaluated. In the present study, therefore, serological and virological analyses were conducted in 20 pig farms suffering from PRRS. Seroprevalence levels in each farm were grouped into 3 patterns: SN (Stable sow groups/Not infected piglet groups, SI (Stable sow groups and Infected piglet groups), and UI (Unstable sow groups and Infected piglet groups). The rates of each serological pattern were 15% (n=3), 10% (n=2), and 75% (n=15), respectively. In addition, the pattern analysis was extended to virological monitoring on the same farms that further included suckling pig groups. As a result, the infection pattern was classified into 4 categories: SNI (Stable sow groups/Not infected suckler groups/Infected piglet groups), SII (Stable sow groups/Infected suckler groups/Infected piglet groups), UNI (Unstable sow groups/Not infected suckler groups/Infected piglet groups), and UII (Unstable sow groups/Infected suckler groups/Infected piglet groups). The rates of each viroprevalence were estimated at 50% (n=10), 30% (n=6), 10% (n=2), and 10% (n=2), respectively. PRRSV viroprevalence results of suckling pig groups revealed that 8 farms were considered virus positive. In 2 farms among these farms, PRRSV appeared to be transmitted vertically to suckling piglets from their sows. In contrast, piglet-to-piglet horizontal transmission of PRRSV seemed to occur in sucking herds of the remaining farms. Thus, this virological analysis on suckling piglets will provide useful information to understand PRRSV transmission routes during the suckling period and to improve a PRRS control programs. Our seroprevalence and viroprevalence data found that infection patterns between sow and piglet groups are not always coincident in the same farm. Remarkably, 15 farms belonging to the UI seroprevalence pattern showed four distinct viroprevalence patterns (SNI; 7, SII; 4, UNI; 2 and UII; 2). Among these farms, 11 farms with unstable seroprevalence sow groups were further identified as the stable viroprevalence pattern. These results indicated that despite the absence of typical seroconversion, PRRSV infection was detected in several farms, implying the limitation of serological analysis. Taken together, our data strongly suggests that both seroprevalence and viroprevalence should be determined in parallel so that a PRRS control strategies can be efficiently developed on a farm level.

An Empirical Analysis of Optimal Size Combination in the Small Crop-Livestock Cycling Organic Farm (소규모 경축순환 유기농가의 경제적 최적규모 조합 실증 분석)

  • Choi, Deog-Cheon
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.1
    • /
    • pp.57-72
    • /
    • 2018
  • Organic agriculture seeks sustainable agriculture. Organic agriculture is based on circulating agriculture of a family farm unit. However, as of the end of 2016, only 33 out of the total organic farming farms were implementing Crop-Livestock cycling organic farming. The reason seems to be a matter of income after all. The optimal size combination refers to the scale by which family farms can maintain their quality of life while engaging in farming activities. In other words. it is a farm scale that maintains optimal income through stable labor costs. In the meantime, there has been no previous study on the optimal economical combination of Crop-Livestock cycling farming. Choi (2016) analyzed whether the economies of scope (EOS) were realized in the combined production by using the management data of the farmers who practiced Crop-Livestock cycling organic farming for four years. As a result, it has been revealed that the EOS measurement value is 0 or more so the economies of scope are being realized. Therefore, the purpose of this empirical analysis is to identify farm incomes under this circumstance. It is assumed that the optimum production is achieved by balancing the total income curve and the total cost curve in the optimal scale production range. The results of the analysis are as follows. First, the income after the conversion to Crop-Livestock cycling farming was 44,789,280 won, the sum of the seedling-livestock sector, which was 17,873,120 won higher when the non-Crop-Livestock cycling farming was assumed. The same is true for 2014 and 2015. The reason for this is that pig droppings were composted from organic seedlings, and the cost of selling pork was 150,000 won/per pig more expensive even though the manufacturing cost of organic feeds was higher than the purchasing cost. Secondly, this study simulated the result that the economic index varies when the farm size combination is changed by the farm size of 100% standard (S100) as of 2014. S130 is the increase in size from 100% of 2014, whereas S30 is the result of 3ha crop and 66 livestock (pigs). As a result of this simulation, Crop-Livestock cycling farming income decreased more than non-Crop-Livestock cycling farming as the farm size decreased, whereas the income decreased as the farm size increased. When the size was reduced below S50, the income tended to decrease. In this situation, EOS changed in the same direction. The results showed that when the farming size was reorganized and reduced to 50% compared to 2014, the income and income difference was the highest. At the same time, economies of scope (EOS) were the highest at 0.12985. In other words, it was found that the income of farm houses in a family farm unit sector was the best in the combination of 1.5ha crop agriculture and 110 livestock (pigs).

Oviduct-specific Glycoprotein 1 Locus is Associated with Litter Size and Weight of Ovaries in Pigs

  • Niu, B.Y.;Xiong, Y.Z.;Li, F.E.;Jiang, S.W.;Deng, C.Y.;Ding, S.H.;Guo, W.H.;Lei, M.G.;Zheng, R.;Zuo, B.;Xu, D.Q.;Li, J.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.5
    • /
    • pp.632-637
    • /
    • 2006
  • Oviduct-specific glycoprotein 1 (OVGP1) is implicated in playing a role in fertilization and early embryo development. In this study, we have obtained the sequence of intron 9 of OVGP1 gene in swine. Comparative sequencing of Meishan (a native Chinese breed) and Large White pig breeds revealed an A/T substitution at position 943. A PCR-EcoRI-RFLP assay was developed to detect this mutation. Polymorphism analysis in Qingping animals showed that pigs with BB genotype had lower number of piglets born alive (NBA) in multiple parities than pigs with AA (p<0.05) and AB genotype (p<0.01). In Large $White{\times}Meishan$ ($LW{\times}M$) $F_2$ offspring, the weight of both ovaries (OW) of the BB genotype was significantly lighter than that of AB (p = 0.05) and AA (p<0.01) genotypes. Analysis of the data also revealed that the mutation locus affected these two traits mostly by additive effects. These studies indicated that the polymorphism was associated with NBA and OW in two distinct populations and further investigations in more purebreds or crossbreds are needed to confirm these results.